今天挺开心的\(\sim\),省选加油\(!\)

\(P4893\)忘情

我能说今晚我才真正学会\(wqs\)和斜率优化吗\(?\)

恰好选几个,必然需要\(wqs\)二分一下

那么考虑不考虑次数情况下转移,\(dp[i]\)表示前\(i\)个分成若干段的最小代价,然后直接转移是\(O(n^2)\)

比较显然的可以写成斜率式

\(dp[j]-2\times sum[j]+sum[j]\times sum[j]=2\times sum[i]\times sum[j]+dp[i]-(sum[i]+1)^2\)

维护一个下凸包即可

#define Eternal_Battle ZXK
#include<bits/stdc++.h>
#define int long long
#define MAXN 100005
using namespace std;
int a[MAXN],sum[MAXN],dp[MAXN];
int sta[MAXN],num[MAXN];
int n,m,INF=LLONG_MAX;
int Y(int x)
{
return dp[x]-2*sum[x]+sum[x]*sum[x];
}
int X(int x)
{
return sum[x];
}
double slope(int x1,int x2)
{
return (double)(Y(x2)-Y(x1))/(X(x2)-X(x1));
}
bool check(int x)
{
int head,tail;
sta[head=tail=1]=0;
memset(num,0,sizeof(num));
memset(dp,0x3f,sizeof(dp));
dp[0]=0;
for(int i=1;i<=n;i++)
{
while(head<tail&&slope(sta[head],sta[head+1])<2*sum[i]) head++;
dp[i]=dp[sta[head]]+(sum[i]-sum[sta[head]]+1)*(sum[i]-sum[sta[head]]+1)+x;
num[i]=num[sta[head]]+1;
while(head<tail&&slope(sta[tail-1],sta[tail])>slope(sta[tail],i)) tail--;
sta[++tail]=i;
}
return num[n]<=m;
}
signed main()
{
scanf("%lld%lld",&n,&m);
for(int i=1;i<=n;i++)
{
scanf("%lld",&a[i]);
sum[i]=sum[i-1]+a[i];
}
if(m==2)
{
int Ans=INF;
for(int i=0;i<=n;i++)
{
Ans=min(Ans,(sum[i]+1)*(sum[i]+1)+(sum[n]-sum[i]+1)*(sum[n]-sum[i]+1));
}
cout<<Ans<<"\n";
return 0;
}
memset(dp,0x3f,sizeof(dp));
int l=0,r=INF/2,mid,ans;
while(l<=r)
{
mid=(l+r)>>1;
if(check(mid))
{
//如果小于等于m
//那么就是减多了
r=mid-1;
ans=mid;
}
else l=mid+1;
}
// cout<<"Ans: "<<ans<<"\n";
check(ans);
cout<<dp[n]-m*ans<<"\n";
}

P4983忘情的更多相关文章

  1. 洛谷P4983 忘情 (WQS二分+斜率优化)

    题目链接 忘情水二分模板题,最优解对划分段数的导数满足单调性(原函数凸性)即可使用此方法. 详细题解洛谷里面就有,不啰嗦了. 二分的临界点让人有点头大... #include<bits/stdc ...

  2. 决策单调性&wqs二分

    其实是一个还算 trivial 的知识点吧--早在 2019 年我就接触过了,然鹅当时由于没认真学并没有把自己学懂,故今复学之( 1. 决策单调性 引入:在求解 DP 问题的过程中我们常常遇到这样的问 ...

  3. DP 优化方法大杂烩 & 做题记录 I.

    标 * 的是推荐阅读的部分 / 做的题目. 1. 动态 DP(DDP)算法简介 动态动态规划. 以 P4719 为例讲一讲 ddp: 1.1. 树剖解法 如果没有修改操作,那么可以设计出 DP 方案 ...

  4. 高考集训讲课(To 高一)

    高考集训讲课(To 高一) 主要是怕下午讲着讲着把自己讲懵了,有一定的迷糊概率 经过机房的讨论,一致认为插头\(DP\)实用性不大,所以这次不讲了,先把重要的讲一讲. 顺便吐槽一下,凭什么另外几个人都 ...

  5. Luogu4983 忘情

    Luogu4983 忘情 定义序列 \(x_1,\ x_2,\ \cdots,\ x_n\) 的值为 \(\frac{((\displaystyle\sum_{k=1}^nx_k\times \bar ...

  6. 洛谷T51924 忘情

    二分上界有多大开多大 二分上界有多大开多大 二分上界有多大开多大 重要的事情说三遍 又被bright神仙带着做题了 先无脑上wqs二分 我们可以把这个柿子画一下,区间的花费就变成((sigema(l~ ...

  7. B 最熟悉的陌生人 (纪念当年就读的梅州市江南高级中学)

    最熟悉的陌生人 作者:张慧桥 枪与玫瑰 我看了一下聊天室的名单,哈哈哈,我不禁喜出望外:蝶恋花那丫头片子挂在线上呢,真是天助我也.初时的担心一扫而光,我精神抖擞地喝下一大口咖啡,猛抽了三口烟,现在的我 ...

  8. 详解Bootstrap面板组件

    面板组件主要作用是用来处理一些其他组件无法完成的功能,在不同的版本中具有不同的源码: LESS:panels.less SASS:_panels.scss 基础面板非常简单,就是一个div容器中运用了 ...

  9. [ZZ] Cache

    http://blog.sina.com.cn/s/blog_6472c4cc0102duzr.html 处理器微架构访问Cache的方法与访问主存储器有类似之处.主存储器使用地址编码方式,微架构可以 ...

随机推荐

  1. 「Java分享客栈」随时用随时翻:微服务链路追踪之zipkin搭建

    前言 微服务治理方案中,链路追踪是必修课,SpringCloud的组件其实使用很简单,生产环境中真正令人头疼的往往是软件维护,接口在微服务间的调用究竟哪个环节出现了问题,哪个环节耗时较长,这都是项目上 ...

  2. vue中使用echarts的两种方法

    在vue中使用echarts有两种方法一.第一种方法1.通过npm获取echarts npm install echarts --save 2.在vue项目中引入echarts 在 main.js 中 ...

  3. 腾讯产品快速尝鲜,蓝鲸智云社区版V6.1灰度测试开启

    这周小鲸悄悄推送了社区版V6.1(二进制部署版本,包含基础套餐.监控日志套餐),没过一天就有用户来问6.1的使用问题了.小鲸大吃一鲸,原来你还是爱我的. ![请添加图片描述](https://img- ...

  4. Golang可重入锁的实现

    Golang可重入锁的实现 项目中遇到了可重入锁的需求和实现,具体记录下. 什么是可重入锁 我们平时说的分布式锁,一般指的是在不同服务器上的多个线程中,只有一个线程能抢到一个锁,从而执行一个任务.而我 ...

  5. python常用标准库(os系统模块、shutil文件操作模块)

    常用的标准库 系统模块 import os 系统模块用于对系统进行操作. 常用方法 os模块的常用方法有数十种之多,本文中只选出最常用的几种,其余的还有权限操作.文件的删除创建等详细资料可以参考官方文 ...

  6. 洛谷 P2629 好消息,坏消息 题解

    暴力算法的时间复杂度是O(n^2),考虑优化: 先导入一种思想--断环为链.说通俗点就是在原数组后面再接上下标为1--(n - 1)的元素: 以样例为例:-3 5 1 2:我们将其断环为链后可以得到这 ...

  7. C#.NET中的程序集版本

    更新记录 2022年4月16日:本文迁移自Panda666原博客,原发布时间:2021年8月22日. 在Visual Studio中查看程序集版本 在程序运行中获得程序集版本信息 除了在Visual ...

  8. 面试突击58:truncate、delete和drop的6大区别

    在 MySQL 中,使用 truncate.delete 和 drop 都可以实现表删除,但它们 3 个的使用场景和执行效果完全不同,接下来我们来盘点一下. truncate.delete.drop区 ...

  9. 关于Vue移动端框架(Muse-UI)的使用(说明书,针对不愿看文档的童鞋)

    一.安装 1.npm安装 npm i muse-ui -S 或者 CDN安装 <link rel="stylesheet" href="https://unpkg. ...

  10. 关于Vue的几个实用知识点(持续更新中……)

    前言 排名不分先后,按自己习惯来的. 一.provide.inject 高级组件 总述: provide在父组件中定义,inject 在子孙组件中定义. provide:选项应该是一个对象或返回一个对 ...