继续复习模板,加深理解ing...

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define R(a,b,c) for(register int a = (b); a <= (c); ++ a)
#define nR(a,b,c) for(register int a = (b); a >= (c); -- a)
#define Max(a,b) ((a) > (b) ? (a) : (b))
#define Min(a,b) ((a) < (b) ? (a) : (b))
#define Fill(a,b) memset(a, b, sizeof(a))
#define Swap(a,b) a^=b^=a^=b
#define ll long long
#define ON_DEBUG #ifdef ON_DEBUG #define D_e_Line printf("\n\n----------\n\n")
#define D_e(x) cout << #x << " = " << x << endl
#define Pause() system("pause") #else #define D_e_Line ; #endif struct ios{
template<typename ATP>ios& operator >> (ATP &x){
x = 0; int f = 1; char c;
for(c = getchar(); c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1;
while(c >= '0' && c <= '9') x = x * 10 + (c ^ '0'), c = getchar();
x*= f;
return *this;
}
}io;
using namespace std; const int N = 100007; int n; int f[N][21]; inline void ST_Init(){
R(j,1,20){
R(i,1,n + 1 - (1 << j)){
f[i][j] = Min(f[i][j - 1], f[i + (1 << (j - 1))][j - 1]);
}
}
}
int lg[N];
inline int Query(int l, int r){
int k = lg[r - l + 1] - 1;
return Min(f[l][k], f[r - (1 << k) + 1][k]);
} int main(){
int Que;
io >> n >> Que;
R(i,1,n){
io >> f[i][0];
// log(n) + 1
lg[i] = lg[i - 1] + ((1 << lg[i - 1]) == i);
} ST_Init(); while(Que--){
int l, r;
io >> l >> r;
printf("%d ", Query(l, r));
} return 0;
}

Luogu1816 忠诚 (ST表)的更多相关文章

  1. 【洛谷P1816】忠诚——ST表做法

    看了两个小时RMQ并位运算,对二进制勉勉强强有了个初步了解,不能说精通(可能今年CSP前都做不到精通),但是记熟板子做做题还是没有问题的 以下是正式题解,相信你看过了题目,我介绍的是ST表的做法(很简 ...

  2. 【模板】ST表 洛谷P1816 忠诚

    P1816 忠诚 题目描述 老管家是一个聪明能干的人.他为财主工作了整整10年,财主为了让自已账目更加清楚.要求管家每天记k次账,由于 管家聪明能干,因而管家总是让财主十分满意.但是由于一些人的挑拨, ...

  3. [luoguP1816] 忠诚(st表 || 线段树)

    传送门 其实我就是想练练 st表 本以为学了线段树可以省点事不学 st表 了 但是后缀数组中用 st表 貌似很方便 所以还是学了吧,反正也不难 ——代码 #include <cstdio> ...

  4. RMQ求解->ST表

    ST表 这是一种神奇的数据结构,用nlogn的空间与nlongn的预处理得出O(1)的区间最大最小值(无修) 那么来看看这个核心数组:ST[][] ST[i][j]表示从i到i+(1<<j ...

  5. ST表 求 RMQ(区间最值)

    RMQ即Range Minimum/Maximun Query,中文意思:查询一个区间的最小值/最大值 比如有这样一个数组:A{3 2 4 5 6 8 1 2 9 7},然后问你若干问题: 数组A下标 ...

  6. POJ3693 Maximum repetition substring [后缀数组 ST表]

    Maximum repetition substring Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9458   Acc ...

  7. 【BZOJ-2006】超级钢琴 ST表 + 堆 (一类经典问题)

    2006: [NOI2010]超级钢琴 Time Limit: 20 Sec  Memory Limit: 552 MBSubmit: 2473  Solved: 1211[Submit][Statu ...

  8. 【BZOJ-3956】Count ST表 + 单调栈

    3956: Count Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 173  Solved: 99[Submit][Status][Discuss] ...

  9. 【BZOJ-4569】萌萌哒 ST表 + 并查集

    4569: [Scoi2016]萌萌哒 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 459  Solved: 209[Submit][Status] ...

随机推荐

  1. JVM的类加载过程

    每日一句 人到情多情转薄,而今真个不多情. 每日一句 The frog in the well knows nothing of the great ocean. 井底之蛙,不知大海. JVM 的类加 ...

  2. Python常用标准库(pickle序列化和JSON序列化)

    常用的标准库 序列化模块 import pickle 序列化和反序列化 把不能直接存储的数据变得可存储,这个过程叫做序列化.把文件中的数据拿出来,回复称原来的数据类型,这个过程叫做反序列化. 在文件中 ...

  3. Unity中通过深度优先算法和广度优先算法打印游戏物体名

    前言:又是一个月没写博客了,每次下班都懒得写,觉得浪费时间.... 深度优先搜索和广度优先搜索的定义,网络上已经说的很清楚了,我也是看了网上的才懂的,所以就不在这里赘述了.今天讲解的实例,主要是通过自 ...

  4. Cent OS8.0 及以上版本安装禅道教程

    Cent OS8系统下安装禅道需要搭建环境如下:httpd ,mariadb , php7.2 再运行禅道 一,环境说明: 运行环境推荐使用 Apache + PHP(7.0/7.1/7.2版本) + ...

  5. JavaScript之parseInt()方法

    parseInt(string, radix):用于解析一个字符串并返回指定基数的十进制整数或者NaN string参数为被解析的值,如果该值不是一个字符串,则会隐式的使用toString()方法转化 ...

  6. c++ RMQ

    关于 RMQ ,即 Range Maxnum (Minnum) Query .用于查询静态区间最大(最小)值, 思路基于动态规划 (DP) 思路 设 F[i][j] 为 [i,i+2j] 区间内的的最 ...

  7. 透过Redis源码探究字符串的实现

    转载请声明出处哦~,本篇文章发布于luozhiyun的博客:https://www.luozhiyun.com 本文使用的Redis 5.0源码 概述 最近在通过 Redis 学 C 语言,不得不说, ...

  8. React技巧之发出http请求

    原文链接:https://bobbyhadz.com/blog/react-send-request-on-click 作者:Borislav Hadzhiev 正文从这开始~ 总览 在React中, ...

  9. 工具箱之 IKVM.NET 项目新进展

    在各种群里经常讨论的一个事情是.NET 如何调用 Java 的实现,最常见的场景之一就是在加解密方面Java提供的密钥,C#无法解密, C#中byte范围是[0,255],而Java中的byte范围是 ...

  10. Linux YUM yum 命令详解

    Yum命令 常用yum命令列表 command is one of: * install package1 [package2] [...] * update [package1] [package2 ...