AOV网的实现(数据结构)
#include <stdio.h>
#include <stdlib.h>
#include <string.h>//我这里的头以及尾巴与书上的不一样。
int max(int a, int b)
{
return a > b?a:b;
}
int min(int a, int b)
{
return a < b?a:b;
}
typedef struct ArcNode
{
int from, to;
struct ArcNode * fnext, *tonext;
int w;
}ArcNode;
typedef struct VertexNode
{
char info;
ArcNode *ff, *ft;
}VertexNode;
typedef struct Graph
{
int num_vertex;
int num_arc;
VertexNode *ver;
}Graph;
Graph *Create(int n)
{
Graph * G = (Graph*)malloc(sizeof(Graph));
G->num_vertex = n;
G->num_arc = 0;
G->ver = (VertexNode*)calloc(n+1, sizeof(VertexNode));
for(int i = 1; i <= n; i++)
{
G->ver[i].ff = NULL;
G->ver[i].ft = NULL;//在这里可以补加点的信息
}
return G;
}
void AddArc(Graph *G,int a, int b, int c)
{
(G->num_arc)++;
ArcNode *s = (ArcNode*)malloc(sizeof(ArcNode));
s->from = a;
s->to = b;
s->fnext = G->ver[a].ff;
G->ver[a].ff = s;
s->tonext = G->ver[b].ft;
G->ver[b].ft = s;
s->w = c;
}
//手写一个栈
typedef struct stack{
int *data;
int cnt;
int max;
}Stack;
Stack *Create_Stack(int max)
{
Stack *s = (Stack*)malloc(sizeof(Stack));
s->cnt = -1;
s->data = (int *)calloc(max, sizeof(int));
s->max = max;
return s;
}
void Pop_Stack(Stack *S)
{
if(S->cnt > -1)
S->cnt--;
}
void Push_Stack(Stack *S, int e)
{
if(S->cnt < S->max)
{
S->cnt++;
S->data[S->cnt] = e;
}
}
int Top_Stack(Stack *S)
{
if(S->cnt > -1)
{
return S->data[S->cnt];
}
return 0x3f3f3f3f;
}
void Destory_Stack(Stack *S)
{
free(S->data);
free(S);
}
int Empty_Stack(Stack *S)
{
if(S->cnt == -1)
return 1;
return 0;
}
//进行topo排序
int TopoSort(Graph *G, int *arr)
{
int total = 0;
Stack* s = Create_Stack(G->num_vertex+2);
int *in = (int *)calloc(G->num_vertex+1,sizeof(G));
for(int i = 1; i <= G->num_vertex; i++)
{
int cnt = 0;
for(ArcNode *A = G->ver[i].ft; A; A = A->tonext)
cnt++;
in[i] = cnt;
if(cnt == 0)
Push_Stack(s, i);
}
while(!Empty_Stack(s))
{
int t = Top_Stack(s);
arr[++total] = t;
Pop_Stack(s);
for(ArcNode *A = G->ver[t].ff; A; A = A->fnext)
{
in[A->to]--;
if(in[A->to]==0)
Push_Stack(s, A->to);
}
}
free(in);
Destory_Stack(s);
if(total != G->num_vertex)
return 1;
return 0;
}
void AOE(Graph *G)
{
int *topo = (int *)calloc(G->num_vertex+2, sizeof(int));
int *ve = (int *)calloc(G->num_vertex+1, sizeof(int));
int *vl = (int *)calloc(G->num_vertex+1, sizeof(int));
for(int i = 1; i <= G->num_vertex; i++)
{
ve[i] = 0;
vl[i] = 0x3f3f3f3f;
}
if(TopoSort(G, topo))
printf("该任务出现闭环!!!");
//计算ve
ve[1] = 0;
for(int i = 2; i <= G->num_vertex; i++)//注意是以2开始
{
for(ArcNode *A = G->ver[topo[i]].ft; A; A = A->tonext)
{
ve[topo[i]] = max(ve[topo[i]],ve[A->from]+A->w);
}
}
//计算vl
vl[G->num_vertex] = ve[G->num_vertex];
for(int i = G->num_vertex; i >= 1; i--)
{
for(ArcNode *A = G->ver[topo[i]].ft; A; A = A->tonext)
{
vl[A->from] = min(vl[A->from], vl[A->to]-A->w);
}
}
for(int i = 1; i <= G->num_vertex; i++)
{
for(ArcNode *A = G->ver[topo[i]].ff; A; A = A->fnext)
{
printf("%d ----> %d:\n",A->from, A->to);
printf("最早:%d\t最迟:%d\t",ve[A->from], vl[A->to]-A->w);
if(ve[A->from]==vl[A->to]-A->w)
printf("关键活动\n");
else
printf("非关键活动,松弛时间:%d\n",vl[A->to]-A->w-ve[A->from]);
}
}
free(topo);
free(ve);
free(vl);
}
int main()//要求:第一个序号代表源点, 最后一个(n号)代表汇点
{
//要求:第一个序号代表源点, 最后一个(n号)代表汇点
//要求:第一个序号代表源点, 最后一个(n号)代表汇点
//要求:第一个序号代表源点, 最后一个(n号)代表汇点
int n,m;
scanf("%d",&n);
Graph *G = Create(n);
scanf("%d",&m);
for(int i = 1; i <= m; i++)
{
int a,b,c;
scanf("%d%d%d",&a, &b, &c);
AddArc(G,a,b,c);
}
AOE(G);
return 0;
}
/*测试用例
9 11
1 2 6
1 3 4
1 4 5
2 5 1
3 5 1
4 6 2
5 7 9
5 8 7
6 8 4
8 9 4
7 9 2
*/
AOV网的实现(数据结构)的更多相关文章
- 算法与数据结构(八) AOV网的关键路径
上篇博客我们介绍了AOV网的拓扑序列,请参考<数据结构(七) AOV网的拓扑排序(Swift面向对象版)>.拓扑序列中包括项目的每个结点,沿着拓扑序列将项目进行下去是肯定可以将项目完成的, ...
- 算法与数据结构(七) AOV网的拓扑排序
今天博客的内容依然与图有关,今天博客的主题是关于拓扑排序的.拓扑排序是基于AOV网的,关于AOV网的概念,我想引用下方这句话来介绍: AOV网:在现代化管理中,人们常用有向图来描述和分析一项工程的计划 ...
- 算法与数据结构(八) AOV网的关键路径(Swift版)
上篇博客我们介绍了AOV网的拓扑序列,请参考<数据结构(七) AOV网的拓扑排序(Swift面向对象版)>.拓扑序列中包括项目的每个结点,沿着拓扑序列将项目进行下去是肯定可以将项目完成的, ...
- 算法与数据结构(七) AOV网的拓扑排序(Swift版)
今天博客的内容依然与图有关,今天博客的主题是关于拓扑排序的.拓扑排序是基于AOV网的,关于AOV网的概念,我想引用下方这句话来介绍: AOV网:在现代化管理中,人们常用有向图来描述和分析一项工程的计划 ...
- AOV网与拓扑排序
在一个表示工程的有向图中,用顶点表示活动,用弧表示活动之间的优先关系,这样的有向图为顶点表示活动的网,我们称之为AOV网(Activity on Vextex Network).AOV网中的弧表示活动 ...
- 有向无环图的应用—AOV网 和 拓扑排序
有向无环图:无环的有向图,简称 DAG (Directed Acycline Graph) 图. 一个有向图的生成树是一个有向树,一个非连通有向图的若干强连通分量生成若干有向树,这些有向数形成生成森林 ...
- 慕课网:C++ & 数据结构
课程链接:james_yuan的课程 这部分太枯燥了,如果教材难度稍大,根本就学不下去,所以就先看看通俗的视频吧. 课程目录 1.C++远征之起航篇 - C++亮点尽在其中 2.C++远征之离港篇 - ...
- AOV网
1.定义 用顶点表示活动,用有向边<Vi, Vj>表示活动间的优先关系. Vi必须先于活动Vj进行. 这种有向图叫做顶点表示活动的AOV网络(Activity On Vertices) 2 ...
- AOE网与AOV网
因为有人无端怀疑此博客为抄袭, 且作者写作此博客时仅为应试之用,今毕业已久此文章已无用处 故删除文章,不想再无故受到打扰 祝好
随机推荐
- HMS Core分析服务助您掌握用户分层密码,实现整体收益提升
随着市场愈发成熟,开发者从平衡收益和风险的角度开始逐步探索混合变现的优势,内购+广告就是目前市场上混合变现的主要方式之一. 对于混合变现模式,您是否有这样的困惑: 如何判断哪些用户更愿意看广告.哪些用 ...
- Linux嵌套目录权限的比较探究
在/tmp目录下新建一个嵌套目录,名字分别为test_0.test_1.test_2.在test_2目录下新建普通文件,名为tryme.设置test_0和test_2的权限为777,设置test_1的 ...
- 关于Spring中的useSuffixPatternMatch
背景 spring-boot的版本是2.1.4.RELEASE,spring的版本是5.1.6.RELEASE 一个例子如下: @Configuration @Import(WebMvcAutoCon ...
- 用python实现自动化登录禅道系统 设置定时器自动执行脚本
由于各种原因,我想试下用python实现自动登录禅道系统,并且每天定时执行.(本人第一次接触自动化,在大佬眼中门槛都没摸到的类型) 首先缕清思路: 1.实现自动登录禅道系统,用selenium实现2. ...
- nginx 源码安装配置详解(./configure)
在"./configure"配置中,"--with"表示启用模块,也就是说这些模块在编译时不会自动构建,"--without"表示禁用模块, ...
- Fail2ban 配置详解 配置目录结构说明
/etc/fail2ban/ ├── action.d │ ├── ... ├── fail2ban.conf ├── fail2ban.d ├── filter.d │ ├── ... ├── ja ...
- Three.js 打造缤纷夏日3D梦中情岛 🌊
声明:本文涉及图文和模型素材仅用于个人学习.研究和欣赏,请勿二次修改.非法传播.转载.出版.商用.及进行其他获利行为. 背景 深居内陆的人们,大概每个人都有过大海之梦吧.夏日傍晚在沙滩漫步奔跑:或是在 ...
- Unity中通过深度优先算法和广度优先算法打印游戏物体名
前言:又是一个月没写博客了,每次下班都懒得写,觉得浪费时间.... 深度优先搜索和广度优先搜索的定义,网络上已经说的很清楚了,我也是看了网上的才懂的,所以就不在这里赘述了.今天讲解的实例,主要是通过自 ...
- 深入浅出Nginx实战与架构
本文主要内容如下(让读者朋友们深入浅出地理解Nginx,有代码有示例有图): 1.Nginx是什么? 2.Nginx具有哪些功能? 3.Nginx的应用场景有哪些? 4.Nginx的衍生生态有哪些? ...
- Java命令行传递参数
目录 命令行传参 代码运行 视频 命令行传参 有时候你希望运行一个程序的时候再传递给它消息. 这要靠传递命令行参数给main()函数实现 package com.broky.base; public ...