luoguP6624 [省选联考 2020 A 卷] 作业题(莫比乌斯反演,矩阵树定理)
luoguP6624 [省选联考 2020 A 卷] 作业题(莫比乌斯反演,矩阵树定理)
题外话:
Day2一题没切。
我是傻逼。
题解时间
某种意义上说刻在DNA里的柿子,大概是很多人学莫反做的第一题的套路。
$ \phi \cdot 1 = id $ 。
然后直接转化:
& \sum_{T} ( ( \sum w_{e_i} ) * gcd( w_{e_i} ) ) \\
= & \sum_{T} ( ( \sum w_{e_i} ) * \sum_{d|gcd( w_{e_i} )} \phi(d) ) \\
= & \sum_{d} \phi(d) \sum_{T:d|gcd( w_{e_i} )} ( \sum w_{e_i} )
\end{aligned}
\]
然后对于求出边权和,简单的想法是对于每条边求有多少含这条边的树。
这时就可以想到矩阵树定理了。但怎么对于每个边求呢?
简单思考发现矩阵元素变成 $ (a+bx) $ 的形式就可以解决。
一条边加的元素是 $ (1+wx) $ ,答案就是求得结果的一次项系数。
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
using namespace std;
typedef long long lint;
template<typename TP>inline void read(TP &tar)
{
TP ret=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){ret=ret*10+(ch-'0');ch=getchar();}
tar=ret*f;
}
namespace RKK
{
const int N=40,M=500;
const int mo=998244353;
int add(const int &a,const int &b){return a+b>=mo?a+b-mo:a+b;}
void doadd(int &a,const int &b){if((a+=b)>=mo) a-=mo;}
int fpow(int a,int p){int ret=1;while(p){if(p&1)ret=1ll*ret*a%mo;a=1ll*a*a%mo,p>>=1;}return ret;}
int pr[160011],pc,phi[160011];bool npr[160011];
void sieve()
{
phi[1]=1;for(int i=2;i<=160000;i++)
{
if(!npr[i]) pr[++pc]=i,phi[i]=i-1;
for(int j=1;j<=pc&&i*pr[j]<=160000;j++)
{
npr[i*pr[j]]=1;
if(i%pr[j]==0){phi[i*pr[j]]=phi[i]*pr[j];break;}
else phi[i*pr[j]]=phi[i]*(pr[j]-1);
}
}
}
int n,m,ans,ex[M],ey[M],ew[M];
struct pat
{
int x,y;
pat(const int &x=0,const int &y=0):x(x),y(y){}
pat operator+(const pat &p)const{return pat(add(x,p.x),add(y,p.y));}
pat operator-(const pat &p)const{return pat(add(x,mo-p.x),add(y,mo-p.y));}
pat operator*(const pat &p)const{return pat(1ll*x*p.x%mo,(1ll*x*p.y+1ll*p.x*y)%mo);}
pat operator/(const pat &p)const
{
int iv=fpow(p.x,mo-2);
return pat(1ll*x*iv%mo,1ll*add(1ll*y*p.x%mo,mo-1ll*x*p.y%mo)*iv%mo*iv%mo);
}
};
pat a[N][N];
pat mtree()
{
pat ret=pat(1,0);bool rev=0;
for(int l=1,e;l<n;l++)
{
for(e=l;e<n;e++)if(a[e][l].x) break;if(e==n) return pat(0,0);
if(e!=l){rev^=1;for(int j=1;j<n;j++) swap(a[l][j],a[e][j]);}
pat k=pat(1,0)/a[l][l];
for(int i=l+1;i<n;i++)
{
pat g=k*a[i][l];
for(int j=l;j<n;j++) a[i][j]=a[i][j]-g*a[l][j];
}
ret=ret*a[l][l];
}
if(rev) ret=pat(0,0)-ret;return ret;
}
int getans(int p)
{
memset(a,0,sizeof(a));
for(int i=1;i<=m;i++)if(ew[i]%p==0)
{
a[ex[i]][ey[i]]=a[ex[i]][ey[i]]-pat(1,ew[i]);
a[ey[i]][ex[i]]=a[ey[i]][ex[i]]-pat(1,ew[i]);
a[ex[i]][ex[i]]=a[ex[i]][ex[i]]+pat(1,ew[i]);
a[ey[i]][ey[i]]=a[ey[i]][ey[i]]+pat(1,ew[i]);
}
return mtree().y;
}
int ct[160011];
int main()
{
sieve();read(n),read(m);
for(int i=1;i<=m;i++)
{
read(ex[i]),read(ey[i]),read(ew[i]);
for(int j=1;j*j<=ew[i];j++)if(ew[i]%j==0){ct[j]++;if(ew[i]/j!=j) ct[ew[i]/j]++;}
}
for(int i=1;i<=160000;i++)if(ct[i]>=n-1) ans=(ans+1ll*phi[i]*getans(i))%mo;
printf("%d\n",ans);
return 0;
}
}
int main(){return RKK::main();}
luoguP6624 [省选联考 2020 A 卷] 作业题(莫比乌斯反演,矩阵树定理)的更多相关文章
- 洛谷 P6624 - [省选联考 2020 A 卷] 作业题(矩阵树定理+简单数论)
题面传送门 u1s1 这种题目还是相当套路的罢 首先看到 \(\gcd\) 可以套路地往数论方向想,我们记 \(f_i\) 为满足边权的 \(\gcd\) 为 \(i\) 的倍数的所有生成树的权值之和 ...
- [省选联考 2020 A 卷] 组合数问题
题意 [省选联考 2020 A 卷] 组合数问题 想法 自己在多项式和数论方面还是太差了,最近写这些题都没多少思路,看完题解才会 首先有这两个柿子 \(k*\dbinom{n}{k} = n*\dbi ...
- luoguP6623 [省选联考 2020 A 卷] 树(trie树)
luoguP6623 [省选联考 2020 A 卷] 树(trie树) Luogu 题外话: ...想不出来啥好说的了. 我认识的人基本都切这道题了. 就我只会10分暴力. 我是傻逼. 题解时间 先不 ...
- luoguP6620 [省选联考 2020 A 卷] 组合数问题(斯特林数)
luoguP6620 [省选联考 2020 A 卷] 组合数问题(斯特林数) Luogu 题外话: LN切这题的人比切T1的多. 我都想到了组合意义乱搞也想到可能用斯特林数为啥还是没做出来... 我怕 ...
- 洛谷P6623——[省选联考 2020 A 卷] 树
传送门:QAQQAQ 题意:自己看 思路:正解应该是线段树/trie树合并? 但是本蒟蒻啥也不会,就用了树上二次差分 (思路来源于https://www.luogu.com.cn/blog/dengy ...
- P6628-[省选联考 2020 B 卷] 丁香之路【欧拉回路,最小生成树】
正题 题目链接:https://www.luogu.com.cn/problem/P6628 题目大意 给出\(n\)个点的一张完全无向图,\(i\sim j\)的边权是\(|i-j|\). 然后给出 ...
- [题解] LOJ 3300 洛谷 P6620 [省选联考 2020 A 卷] 组合数问题 数学,第二类斯特林数,下降幂
题目 题目里要求的是: \[\sum_{k=0}^n f(k) \times X^k \times \binom nk \] 这里面出现了给定的多项式,还有组合数,这种题目的套路就是先把给定的普通多项 ...
- 题解 P6622 [省选联考 2020 A/B 卷] 信号传递
洛谷 P6622 [省选联考 2020 A/B 卷] 信号传递 题解 某次模拟赛的T2,考场上懒得想正解 (其实是不会QAQ), 打了个暴力就骗了\(30pts\) 就火速溜了,参考了一下某位强者的题 ...
- luoguP6622 [省选联考 2020 A/B 卷] 信号传递(状压dp)
luoguP6622 [省选联考 2020 A/B 卷] 信号传递(状压dp) Luogu 题外话: 我可能是傻逼, 但不管我是不是傻逼, 我永远单挑出题人. 题解时间 看数据范围可以确定状压dp. ...
随机推荐
- 求解Ax=b
一 线性方程组 Ax=b 的解释 线性方程组 Ax=b,其中矩阵 A 尺寸为 m*n, 当 A 为方正时,可使用消元法判断解是否存在并求解.当 A 为长方形矩阵时,同样可使用消元法判断解存在情况并求解 ...
- Solution -「CF 623E」Transforming Sequence
题目 题意简述 link. 有一个 \(n\) 个元素的集合,你需要进行 \(m\) 次操作.每次操作选择集合的一个非空子集,要求该集合不是已选集合的并的子集.求操作的方案数,对 \(10^9 ...
- 私有化轻量级持续集成部署方案--03-部署web服务(下)
提示:本系列笔记全部存在于 Github, 可以直接在 Github 查看全部笔记 配置接口代理 前后端分离情况下,前端请求后端接口最常用的一种方式就是使用反向代理,反向代理会让浏览器认为是同源路径, ...
- Ribbon负载均衡及其应用
nginx - 随笔分类 - 池塘里洗澡的鸭子 - 博客园 (cnblogs.com)中涉及到负载均衡,为何此处由涉及Ribbon负载均衡呢?那是因为ngnix是服务端的负责均衡,而Ribbon是客户 ...
- BUUCTF-jarvisoj_level0
因为最近正在学习pwn,所以一直在各种CTF平台刷题,(因为初学,目前刷的一下题目都是相较于入门) 下载附件丢到kali里面checksec检测一下, 有一个NX,然后放到IDA,直接shift+f1 ...
- 宿主机ping不通虚拟机,虚拟机能ping通宿主机
最近,微信提升群里好几个小伙伴遇到了如题的问题. 问了下原因,原来是我说的把宿主机网卡ip获取方式改为自动,结果他们把宿主机上虚拟网卡的ip改为自动了. 当然,分析"宿主机ping不通虚拟机 ...
- 商业智能BI必备的特性,BI工具介绍
商业智能BI的本质 对企业来说,商业智能BI不能直接产生决策,而是利用BI工具处理后的数据来支持决策.核心是通过构建数据仓库平台,有效整合数据.组织数据,为分析决策提供支持并实现其价值. 传统的DW/ ...
- 医院大数据平台建设_构建医院智能BI平台的关键技术
在新技术层出不穷的当下,世界各地的组织正在以闪电般的速度变化和进化,以便在新技术可用时加以利用.其中目前最具活力的一个领域是商业智能(BI).想一想,你可能已经习惯以每周或每月IT或数据科学家交付给你 ...
- 【C#集合】Hashtable 和 Dictionary的区别
Hashtable 和 Dictionary <K, V> 类型 1):单线程程序中推荐使用 Dictionary, 有泛型优势, 且读取速度较快, 容量利用更充分. 2):Diction ...
- 转载 CoreCLR源码探索(七) JIT的工作原理(入门篇)
转载自:https://www.cnblogs.com/zkweb/p/7687737.html 很多C#的初学者都会有这么一个疑问, .Net程序代码是如何被机器加载执行的? 最简单的解答是, C# ...