CF1515H口胡
居然一下就做出来了。。。不知道是不是对的/fad
考虑操作的本质,首先将所有元素插入线段树中。
来依次考虑每一种操作:
- 区间与
注意到这个操作类似将某些节点的右儿子合并到左儿子上,而一个节点最多被合并一次,所以可以暴力合并,如果没有兄弟那就打上标记。
- 区间或
和前者类似。
- 区间异或
这个操作是交换左右儿子,所以直接打上标记,前面没有兄弟的时候也可以打上相同的标记。
- 询问
这不是用脚维护一下就好了吗。
但是注意到这只对全局操作管用,所以考虑通过某种方式使得区间也管用。
首先将整个区间拆分成线段树上的区间。
对于一个区间,先进行上面的合并操作,再按照更高的位合并到别的区间上去。
但是如果是异或就很麻烦了。所以考虑将被修改的节点全部拉出来,修改完毕后再插入回去。
至于实现,我们注意到一次是对同一层的一车区间干相同的事。所以不妨对整颗线段树 BFS,然后在 BFS 序上开一颗平衡树,来维护没有被合并的点。
然后,将左右儿子合并的操作反过来,最后统一将区间打上异或标记。
一个节点会被合并 \(O(\log V)\) 次,所以会被插入平衡树 \(O(\log V)\) 次,所以复杂度应该是 \(O(n\log^2V+q\log n)\) 的。
CF1515H口胡的更多相关文章
- Topcoder口胡记 SRM 562 Div 1 ~ SRM 599 Div 1
据说做TC题有助于提高知识水平? :) 传送门:https://284914869.github.io/AEoj/index.html 转载请注明链接:http://www.cnblogs.com/B ...
- 口胡FFT现场(没准就听懂了)&&FFT学习笔记
前言(不想听的可以跳到下面) OK.蒟蒻又来口胡了. 自从ZJOI2019上Day的数论课上的多项式听到懵逼了,所以我就下定决心要学好多项式.感觉自己以前学的多项式都是假的. 但是一直在咕咕,现在是中 ...
- BZOJ 口胡记录
最近实在是懒的不想打代码...好像口胡也算一种训练,那就口胡把. BZOJ 2243 染色(树链剖分) 首先树链剖分,然后记录下每个区间的左右端点颜色和当前区间的颜色段.再对每个节点维护一个tag标记 ...
- Atcoder/Topcoder 口胡记录
Atcoder/Topcoder 理论 AC Atcoder的❌游戏示范 兴致勃勃地打开一场 AGC 看 A 题,先 WA 一发,然后花了一年时间 Fix. 看 B 题,啥玩意?这能求? 睡觉觉. e ...
- NOIP2016考前做题(口胡)记录
NOIP以前可能会持续更新 写在前面 NOIP好像马上就要到了,感觉在校内训练里面经常被虐有一种要滚粗的感觉(雾.不管是普及组还是提高组,我都参加了好几年了,结果一个省一都没有,今年如果还没有的话感觉 ...
- 关于有向图走“无限次”后求概率/期望的口胡/【题解】HNCPC2019H 有向图
关于有向图走"无限次"后求概率/期望的口胡/[题解]HNCPC2019H 有向图 全是口胡 假了不管 讨论的都是图\(G=(V,E),|V|=n,|E|=m\)上的情况 " ...
- 「口胡题解」「CF965D」Single-use Stones
目录 题目 口胡题解 题目 有许多的青蛙要过河,可惜的是,青蛙根本跳不过河,他们最远只能跳 \(L\) 单位长度,而河宽 \(W\) 单位长度. 在河面上有一些石头,距离 \(i\) 远的地方有 \( ...
- PKUSC 2022 口胡题解
\(PKUSC\ 2022\)口胡题解 为了更好的在考试中拿分,我准备学习基础日麻知识(为什么每年都考麻将 啊啊啊) 首先\(STO\)吉老师\(ORZ,\)真的学到了好多 观察标签发现,这套题覆盖知 ...
- 「线性基」学习笔记and乱口胡总结
还以为是什么非常高大上的东西花了1h不到就学好了 线性基 线性基可以在\(O(nlogx)\)的时间内计算出\(n\)个数的最大异或和(不需要相邻). 上述中\(x\)表示的最大的数. 如何实现 定义 ...
随机推荐
- JDK版本基础知识解释
感谢大佬:https://www.cnblogs.com/bjguanmu/articles/8710209.html jdk:java development kit,是程序员编写java程序需要的 ...
- Linux下Mysql报错
报错内容为:[mysql]ERROR 2002 (HY000): Can't connect to local MySQL server through socket '/var/lib/mysql/ ...
- 关于Java的=赋值操作和方法传递对象时的引用
原创:转载需注明原创地址 https://www.cnblogs.com/fanerwei222/p/11405920.html 下面通过一段代码和debug结果来展示Java中=操作的赋值改变过程. ...
- DNS域名解析之正向解析
DNS域名解析之正向解析 1.DNS介绍 2.DNS正向解析实验 1.DNS定义:DNS是"域名系统"的英文缩写.它作为将域名和IP地址相互映射的一个分布式数据库,能够使人更方便地 ...
- Endnote
#Entnote无法使用Find all test 搜索到sciencedirect的文章(或Elsevier 爱思唯尔) 下面是来自endnote官方论坛的原文Find full text for ...
- PlatformIO 创建 libopencm3 + FreeRTOS 项目
PlatformIO: libopencm3 + FreeRTOS 以下步骤基于常见的 Bluepill STM32F103C8T6, 也适用于其它 libopencm3 支持的MCU型号 方案一: ...
- 在MacOS安装puppeteer
安装node:升级:npm i npm 安装yarn:需要注意先把yarn的流程跑完,特别是package.json 安装puppeteer:yarn add puppeteer 安装完成以后需要重启 ...
- Solution -「SDOI 2017」「洛谷 P3784」遗忘的集合
\(\mathcal{Description}\) Link. 给定 \(\{f_1,f_2,\cdots,f_n\}\),素数 \(p\).求字典序最小的 \(\{a_1,a_2,\cdot ...
- CentOS 7 部署 KVM 虚拟化
文章目录 KVM的组件 KVM模块load进内存之后,系统的运行模式 部署KVM 基础配置 判断CPU是否支持硬件虚拟化 检测 kvm 模块是否装载 安装用户端工具 qemu-kvm 启动服务 查看网 ...
- 从命令模式的维度理解Spring 之Application Event
Spring的事件(Application Event)为Bean与Bean之间的信息通讯提供了支持.当一个Bean处理完一个任务之后,希望另一Bean指定并能做相应的处理,这时我们就需要让另外一个B ...