文本挖掘与NLP笔记——代码向:分词
分词:jieba.cut
words = jieba.cut("我来到北京大学",cut_all=True)
print('全模式:'+'/'.join([w for w in words])) #全模式
words = jieba.cut("我来到北京大学",cut_all=False)
print('精确模式:'+'/'.join([w for w in words])) #精确模式,默认
words = jieba.cut_for_search("小明毕业于北京大学,后在美国哈佛大学深造")
print('/'.join([w for w in words])) #搜索引擎模式,在精确模式的基础上,对长词在此划分
全模式:我/来到/北京/北京大学/大学
精确模式:我/来到/北京大学
请练习添加自定义词典
词性:jieba.posseg
import jieba.posseg as pg
for word, flag in pg.cut("你想去学校填写学生寒暑假住校申请表吗?"):
print('%s %s' % (word, flag))
'你/学校/填写/学生/寒暑假/住校/申请表'
分词引入停用词
import jieba
import pandas as pd
import numpy as np
paths = '中英文停用词.xlsx'
dfs = pd.read_excel(paths,dtype=str)
stopwords = ['想','去','吗','?']
words = jieba.cut("你想去学校填写学生寒暑假住校申请表吗?")
'/'.join([w for w in words if (w not in stopwords)])#此处’/'表示换行
'你/学校/填写/学生/寒暑假/住校/申请表'
txt转dataframe函数
import random
import jieba.posseg as pg
import pandas as pd
import numpy as np
def generatorInfo(file_name):
# 读取文本文件
with open(file_name, encoding='utf-8') as file:
line_list = [k.strip() for k in file.readlines()]
data = []
for k in random.sample(line_list,1000):
t = k.split(maxsplit=1)
#data_label_list.append(t[0])
#data_content_list.append(t[1])
data.append([t[0],' '.join([w for w,flag in pg.cut(t[1]) if (w not in dfs['stopwords']) and (w !=' ') and (len(w)>=2)])])
return data
file_name = 'cnews.train.txt'
df = pd.DataFrame(np.array(generatorInfo(file_name)),columns=['类别','分词'])
path = '训练集分词结果(随机选取1000个样本).xlsx'
df.to_excel(path,index=False)
df
词云图:wordcloud
%pylab inline
import matplotlib.pyplot as plt
from wordcloud import WordCloud
text = ' '.join(list(df['分词']))
wcloud = WordCloud(
font_path='simsun.ttc', #字体路径
background_color='white', #指定背景颜色
max_words=500, #词云显示最大词数
max_font_size=150, #指定最大字号
#mask = mask #背景图片
)
wcloud = wcloud.generate(text) #生成词云
plt.imshow(wcloud)
plt.axis('off')
plt.show()
提取关键词:jieba.analyse.extract_tags
import jieba.analyse
import pandas as pd
import numpy as np
path = '训练集分词结果(随机选取1000个样本).xlsx'
df = pd.read_excel(path,dtype=str)
s = ' '.join(list(df['分词']))
for w,x in jieba.analyse.extract_tags(s,withWeight=True):
print('%s %s' % (w,x))
请练习基于TextRank算法抽取关键词
import jieba.analyse
import pandas as pd
import numpy as np
path = '训练集分词结果(随机选取1000个样本).xlsx'
df = pd.read_excel(path,dtype=str)
tag = list(set(list(df['类别'])))
for t in tag:
s = ' '.join(list(df[df['类别']==t]['分词']))
print(t)
for w,x in jieba.analyse.extract_tags(s,withWeight=True):
print('%s %s' % (x,w))
构建词向量
构建词向量简单的有两种分别是TfidfTransformer和 CountVectorizer
#CountVectorizer会将文本中的词语转换为词频矩阵
from sklearn.feature_extraction.text import CountVectorizer
path = '训练集分词结果(随机选取1000个样本).xlsx'
df = pd.read_excel(path,dtype=str)
corpus = df['分词']
#vectorizer = CountVectorizer(max_features=5000)
vectorizer = CountVectorizer()
X = vectorizer.fit_transform(corpus)
print(X)
from sklearn.feature_extraction.text import TfidfTransformer
import datetime
starttime = datetime.datetime.now()
transformer = TfidfTransformer()
tfidf = transformer.fit_transform(X)
word = vectorizer.get_feature_names()
weight = tfidf.toarray()
print(weight)
词语分类:人工vsKmeans
from sklearn.cluster import KMeans
starttime = datetime.datetime.now()
path = '训练集分词结果(随机选取1000个样本).xlsx'
df = pd.read_excel(path,dtype=str)
corpus = df['分词']
kmeans=KMeans(n_clusters=10) #n_clusters:number of cluster
kmeans.fit(weight)
res = [list(df['类别']),list(kmeans.labels_)]
df_res = pd.DataFrame(np.array(res).T,columns=['人工分类','Kmeans分类'])
path_res = 'Kmeans自动分类结果.xlsx'
df_res.to_excel(path_res,index=False)
df_res
path = 'Kmeans自动分类结果.xlsx'
df = pd.read_excel(path,dtype=str)
df['计数'] = [1 for m in range(len(df['人工分类']))]
df1 = pd.pivot_table(df, index=['人工分类'], columns=['Kmeans分类'], values=['计数'], aggfunc=np.sum, fill_value=0)
co = ['人工分类']
co.extend(list(df1['计数'].columns))
df1 = df1.reset_index()
df2 = pd.DataFrame((np.array(df1)),columns=co)
path_res = '人工与Kmeans分类结果对照.xlsx'
df2.to_excel(path_res,index=False)
df2
import random
def is_contain_chinese(check_str):
for ch in check_str:
if u'\u4e00' <= ch <= u'\u9fff':
return 1
return 0
def generatorInfo(file_name):
"""
batch_size:生成数据的batch size
seq_length:输入文字序列长度
num_classes:文本的类别数
file_name:读取文件的路径
"""
# 读取文本文件
with open(file_name, encoding='utf-8') as file:
line_list = [k.strip() for k in file.readlines()]
#data_label_list = [] # 创建数据标签文件
#data_content_list = [] # 创建数据文本文件
data = []
for k in random.sample(line_list,1000):
t = k.split(maxsplit=1)
#data_label_list.append(t[0])
#data_content_list.append(t[1])
data.append([t[0],' '.join([w for w,flag in jieba.posseg.cut(t[1]) if (w not in dfs['stopwords']) and (w !=' ') and (flag not in ["nr","ns","nt","nz","m","f","ul","l","r","t"]) and (len(w)>=2)])])
return data
#导入中文停用词表
paths = '中英文停用词.xlsx'
dfs = pd.read_excel(paths,dtype=str)
file_name = 'cnews.train.txt'
df = pd.DataFrame(np.array(generatorInfo(file_name)),columns=['类别','分词'])
df
汇总
import random
import jieba
import pandas as pd
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.cluster import KMeans
from sklearn.feature_extraction.text import TfidfTransformer
def is_contain_chinese(check_str):
for ch in check_str:
if u'\u4e00' <= ch <= u'\u9fff':
return 1
return 0
def generatorInfo(file_name):
"""
batch_size:生成数据的batch size
seq_length:输入文字序列长度
num_classes:文本的类别数
file_name:读取文件的路径
"""
# 读取文本文件
with open(file_name, encoding='utf-8') as file:
line_list = [k.strip() for k in file.readlines()]
#data_label_list = [] # 创建数据标签文件
#data_content_list = [] # 创建数据文本文件
data = []
for k in random.sample(line_list,1000):
t = k.split(maxsplit=1)
#data_label_list.append(t[0])
#data_content_list.append(t[1])
data.append([t[0],' '.join([w for w,flag in jieba.posseg.cut(t[1]) if (w not in dfs['stopwords']) and (w !=' ') and (flag not in ["nr","ns","nt","nz","m","f","ul","l","r","t"]) and (len(w)>=2)])])
return data
#导入中文停用词表
paths = '中英文停用词.xlsx'
dfs = pd.read_excel(paths,dtype=str)
file_name = 'cnews.train.txt'
df = pd.DataFrame(np.array(generatorInfo(file_name)),columns=['类别','分词'])
#统计词频
corpus = df['分词'] #语料中的单词以空格隔开
#vectorizer = CountVectorizer(max_features=5000)
vectorizer = CountVectorizer()
X = vectorizer.fit_transform(corpus)
#文本向量化
transformer = TfidfTransformer()
tfidf = transformer.fit_transform(X)
word = vectorizer.get_feature_names()
weight = tfidf.toarray()
kmeans=KMeans(n_clusters=10) #n_clusters:number of cluster
kmeans.fit(weight)
res = [list(df['类别']),list(kmeans.labels_)]
df_res = pd.DataFrame(np.array(res).T,columns=['人工分类','Kmeans分类'])
df_res['计数'] = [1 for m in range(len(df_res['人工分类']))]
df1 = pd.pivot_table(df_res, index=['人工分类'], columns=['Kmeans分类'], values=['计数'], aggfunc=np.sum, fill_value=0)
co = ['人工分类']
co.extend(list(df1['计数'].columns))
df1 = df1.reset_index()
df2 = pd.DataFrame((np.array(df1)),columns=co)
df2
df['Kmeans分类'] = df_res['Kmeans分类']
df
文本挖掘与NLP笔记——代码向:分词的更多相关文章
- seg:NLP之正向最大匹配分词
已迁移到我新博客,阅读体验更佳seg:NLP之正向最大匹配分词 完整代码实现放在我的github上:click me 一.任务要求 实现一个基于词典与规则的汉语自动分词系统. 二.技术路线 采用正向最 ...
- NLP自然语言处理中英文分词工具集锦与基本使用介绍
一.中文分词工具 (1)Jieba (2)snowNLP分词工具 (3)thulac分词工具 (4)pynlpir 分词工具 (5)StanfordCoreNLP分词工具 1.from stanfor ...
- CTR学习笔记&代码实现2-深度ctr模型 MLP->Wide&Deep
背景 这一篇我们从基础的深度ctr模型谈起.我很喜欢Wide&Deep的框架感觉之后很多改进都可以纳入这个框架中.Wide负责样本中出现的频繁项挖掘,Deep负责样本中未出现的特征泛化.而后续 ...
- CTR学习笔记&代码实现3-深度ctr模型 FNN->PNN->DeepFM
这一节我们总结FM三兄弟FNN/PNN/DeepFM,由远及近,从最初把FM得到的隐向量和权重作为神经网络输入的FNN,到把向量内/外积从预训练直接迁移到神经网络中的PNN,再到参考wide& ...
- CTR学习笔记&代码实现4-深度ctr模型 NFM/AFM
这一节我们总结FM另外两个远亲NFM,AFM.NFM和AFM都是针对Wide&Deep 中Deep部分的改造.上一章PNN用到了向量内积外积来提取特征交互信息,总共向量乘积就这几种,这不NFM ...
- CTR学习笔记&代码实现5-深度ctr模型 DeepCrossing -> DCN
之前总结了PNN,NFM,AFM这类两两向量乘积的方式,这一节我们换新的思路来看特征交互.DeepCrossing是最早在CTR模型中使用ResNet的前辈,DCN在ResNet上进一步创新,为高阶特 ...
- CTR学习笔记&代码实现6-深度ctr模型 后浪 xDeepFM/FiBiNET
xDeepFM用改良的DCN替代了DeepFM的FM部分来学习组合特征信息,而FiBiNET则是应用SENET加入了特征权重比NFM,AFM更进了一步.在看两个model前建议对DeepFM, Dee ...
- 哈工大 NLP 实验一 汉语分词系统
NLP实验代码可见github:NLP实验代码整理 本实验会查重,而且写起来难度比较大,建议早一些开始.实验报告要用顶会论文形式呈现,建议使用overleaf里的ACL论文latex模板比较方便一点.
- HanLP《自然语言处理入门》笔记--2.词典分词
2. 词典分词 中文分词:指的是将一段文本拆分为一系列单词的过程,这些单词顺序拼接后等于原文本. 中文分词算法大致分为基于词典规则与基于机器学习这两大派. 2.1 什么是词 在基于词典的中文分词中,词 ...
随机推荐
- 【AGC】引导用户购买提升用户留存率
借助AGC的云数据库.云托管.应用内消息.App Linking等服务,您可以给不同价值用户设置不同的优惠套餐活动,引导用户持续购买,增强用户黏性.判断用户价值,发送营销短信,引导用户参与营销活动,提 ...
- python推导式与海象运算符
背景:介绍两种python用于语句优化的用法 一.推导式 1.推导式简介: Python 推导式是一种独特的数据处理方式,可以从一个数据序列构建另一个新的数据序列的结构体. 支持:列表(list).元 ...
- Redis 05 集合
参考源 https://www.bilibili.com/video/BV1S54y1R7SB?spm_id_from=333.999.0.0 版本 本文章基于 Redis 6.2.6 Set 中的值 ...
- IDEA Git缓慢
有的公司电脑会强制安装一些特定的杀毒软件或者监控软件. 在安装后,我们的 IDEA 可能会出现 Git 相关操作非常缓慢的情况. 虽然用 Git 命令操作不受影响,但终究没有可视化界面直观方便. 解决 ...
- HC32L110 在 Ubuntu 下使用 J-Link 烧录
目录 HC32L110(一) HC32L110芯片介绍和Win10下的烧录 HC32L110(二) HC32L110在Ubuntu下的烧录 HC32L110 在 Ubuntu 下使用 J-Link 烧 ...
- Java SE 11 新增特性
Java SE 11 新增特性 作者:Grey 原文地址:Java SE 11 新增特性 源码 源仓库: Github:java_new_features 镜像仓库: GitCode:java_new ...
- net::ERR_BLOCKED_BY_CLIENT 错误导致页面加载不出来
AdBlock 禁止广告的插件屏蔽你的网络请求,屏蔽了一些重要的文件,导致页面加载不出来. 解决方案: 1.修改资源文件的名称,把ad替换成其他字符: 2.关闭广告拦截器: 3.广告拦截器设置白名单.
- 彻底搞懂C#异步编程 async和await的原理
1.前提 熟练掌握Task并行编程. 2.用Task并行解释async和await异步 因为控制台有多线程操作的优化,因此这里选择winform来做示例. 测试代码如下所示: 有三个textbox,一 ...
- pytest精髓__fixture
命令:fixture(scope='function',params=None,autouse=False,ids=None,name=None) 参数说明 scope:有四个级别参数函数" ...
- FR801xH开发
一.空间分配 二.代码流程 1)user_custom_parameters 函数 __jump_table 结构体中保存了一些配置信息: void user_custom_parameters(vo ...