摘要:对于Spark用户而言,借助Volcano提供的批量调度、细粒度资源管理等功能,可以更便捷的从Hadoop迁移到Kubernetes,同时大幅提升大规模数据分析业务的性能。

2022年6月16日,Apache Spark 3.3版本正式发布,其中《Support Customized Kubernetes Schedulers》作为Spark 3.3版本的重点(Highlight)特性,其关键能力是从框架层面支持定制化的Kubernetes度器,并且将Volcano作为Spark on Kubernetes的默认batch调度器。这也是Apache Spark社区官方支持Volcano的第一个版本。对于Spark用户而言,借助Volcano提供的批量调度、细粒度资源管理等功能,可以更便捷的从Hadoop迁移到Kubernetes,同时大幅提升大规模数据分析业务的性能。

华为牵头发起,主流厂商协作

该特性由华为牵头发起,由来自华为、Apple、Cloudera、Netflix、Databricks等公司的开发者共同协作完成。通过在Apache Spark支持自定义调度能力,允许用户插件化使用各种第三方自定义调度。

Spark + Volcano:更完善的调度能力

Spark的资源管理平台正在向Kubernetes演进,Apache Spark现有架构下,Job的单主、多从节点的分离调度,导致了Spark driver节点资源死锁问题,尤其是在资源紧张的情况下,会经常出现此类问题。同时,由于原生Kubernetes的调度能力受限,也无法完成Job粒度诸如队列调度、公平调度、资源预留等功能。

Volcano作为CNCF社区首个云原生批量计算,于2019年6月在上海KubeCon正式开源,并在2020年4月成为CNCF官方项目。2022年4月,Volcano正式晋级为CNCF孵化项目。Volcano社区开源以来,在人工智能、大数据、基因测序、转码、渲染等海量数据计算和分析场景得到快速应用,并构建起完善的上下游生态,目前腾讯、爱奇艺、小红书、蘑菇街、唯品会、鹏程实验室、锐天投资等企业均将Volcano应用于生产环境。

Spark 官方支持Volcano将会进一步加速大数据平台迁移到Kubernetes的进程,帮助Spark用户应对以下常见的批量调度场景。

常见调度场景:

作业级的公平调度 (Job-based Fair-share)

当运行多个弹性作业(如流媒体分析)时,需要公平地为每个作业分配资源,以满足多个作业竞争附加资源时的SLA/QoS要求。在最坏的情况下,单个作业可能会启动大量的pod资源利用率低,从而阻止其他作业由于资源不足而无法运行。为了避免分配过小(例如,为每个作业启动一个Pod),Volcano允许弹性作业定义应该启动的Pod的最小可用数量。 超过指定的最小可用量的任何pod都将公平地与其他作业共享集群资源。

队列 (Queue)

队列还广泛用于共享弹性工作负载和批处理工作负载的资源。队列的主要目的是:

  • 在不同的“租户”或资源池之间共享资源,例如将每一个部门映射到一个队列,实现多个部门通过队列的权重,动态共享集群的资源。
  • 为不同的“租户”或资源池支持不同的调度策略或算法,如FIFO、Fairness、Priority等

队列被实现为集群范围的CRD,和namespace实现了解耦。这允许将在不同namespace中创建的作业放置在一个共享队列中。队列还提供了min和max,min是队列的最小保障资源,任何时刻该队列有紧急任务提上来都保证有min资源可用,max是队列资源使用上限。min和max之间的资源如果闲置,允许共享给其他队列的任务来提升整体的资源利用率。

面向用户的, 跨队列的公平调度 (Namespace-based fair-share Cross Queue)

在队列中,每个作业在调度循环期间有几乎相等的调度机会,这意味着拥有更多作业的用户有更大的机会安排他们的作业,这对其他用户不公平。 例如,有一个队列包含少量资源,有10个pod属于UserA,1000个pod属于UserB。在这种情况下,UserA的pod被绑定到节点的概率较小。

为了平衡同一队列中用户之间的资源使用,需要更细粒度的策略。考虑到Kubernetes中的多用户模型,使用名称空间来区分不同的用户, 每个命名空间都将配置一个权重,作为控制其资源使用优先级的手段。

抢占 (Preemption & Reclaim)

通过公平分享来支持借贷模型,一些作业/队列在空闲时会过度使用资源。但是,如果有任何进一步的资源请求,资源“所有者”将“收回”。 资源可以在队列或作业之间共享:回收用于队列之间的资源平衡,抢占用于作业之间的资源平衡。

最小资源预留(minimal resource reservation)

运行拥有多个任务角色的作业时(如Spark)时,Spark driver pod会先创建并运行,然后请求Kube-apiserver创建Spark executor pod,在资源紧张或高并发的场景,时常会出现大量作业提交导致所有可用资源被Spark driver pod耗尽,Spark executor无法获取资源,最终所有Spark作业无法正常运行。为解决此问题,用户为Spark driver pod 和 executor pod创建专有节点进行静态划分,而这带来了资源碎片、利用率低下的问题。Volcano提供的minimal resource reservation 允许为每个Spark作业预留资源,防止Spark executor无法获取资源而导致的死锁问题,相比于静态划分的作法,性能提升30%+。

预留与回填 (Reservation & Backfill)

当一个请求大量资源的“巨大”作业提交给Kubernetes时,当有许多小作业在管道中时,该作业可能会饿死,并最终根据当前的调度策略/算法被杀死。为了避免饥饿, 应该有条件地为作业保留资源,例如超时。当资源被保留时,它们可能会处于空闲和未使用状态。为了提高资源利用率,调度程序将有条件地将“较小”作业回填到那些保留资源中。 保留和回填都是根据插件的反馈触发的:Volcano供了几个回调接口,供开发人员或用户决定哪些作业应该被填充或保留。

未来发展

随着场景的日益丰富,Volcano也在不断的添加新的算法,同时,相应的接口也在不断的完善,方便用户扩展并自定义相应的算法。另一方面,社区也在持续的扩大技术版图支持新的场景如跨云跨集群调度、混部、FinOps、智能弹性调度、细粒度资源管理等。

近期我们还会对Spark 3.3中Volcano 带来的批量调度能力进行详细技术解读,敬请期待。添加Volcano小助手k8s2222,进入Volcano社区交流群,大咖在侧,定期分享。

Spark 3.3 release notes: https://spark.apache.org/releases/spark-release-3-3-0.html

Volcano官网:https://volcano.sh/zh/docs/

Github : https://github.com/volcano-sh/volcano

点击关注,第一时间了解华为云新鲜技术~

Volcano成Spark默认batch调度器的更多相关文章

  1. spark的task调度器(FAIR公平调度算法)

    FAIR  调度策略的树结构如下图所示: FAIR 调度策略内存结构 FAIR 模式中有一个 rootPool 和多个子 Pool, 各个子 Pool 中存储着所有待分配的 TaskSetMagage ...

  2. 转: 调整 Linux I/O 调度器优化系统性能

    转自:https://www.ibm.com/developerworks/cn/linux/l-lo-io-scheduler-optimize-performance/index.html 调整 ...

  3. MapReduce调度器

    1. 先进先出(FIFO)调度器 先进先出调度器是Hadoop的默认调度器.就像这个名字所隐含的那样,这种调度器就是用简单按照“先到先得”的算法来调度任务的.例如,作业A和作业B被先后提交.那么在执行 ...

  4. Kubernetes 学习20调度器,预选策略及优选函数

    一.概述 1.k8s集群中能运行pod资源的其实就是我们所谓的节点,也称为工作节点.master从本质上来讲,他其实是运行整个集群的控制平面组件的比如apiserver,scheal,controlm ...

  5. kubernetes 调度器

    调度器 kube-scheduler 是 kubernetes 的核心组件之一,主要负责整个集群资源的调度功能,根据特定的调度算法和策略,将 Pod 调度到最优的工作节点上面去,从而更加合理.更加充分 ...

  6. Hadoop的调度器总结

    Hadoop的调度器总结 随着MapReduce的流行,其开源实现Hadoop也变得越来越受推崇.在Hadoop系统中,有一个组件非常重要,那就是调度器,它的作用是将系统中空闲的资源按一定策略分配给作 ...

  7. JStorm与Storm源码分析(三)--Scheduler,调度器

    Scheduler作为Storm的调度器,负责为Topology分配可用资源. Storm提供了IScheduler接口,用户可以通过实现该接口来自定义Scheduler. 其定义如下: public ...

  8. Kubernetes集群调度器原理剖析及思考

    简述 云环境或者计算仓库级别(将整个数据中心当做单个计算池)的集群管理系统通常会定义出工作负载的规范,并使用调度器将工作负载放置到集群恰当的位置.好的调度器可以让集群的工作处理更高效,同时提高资源利用 ...

  9. RxJS——调度器(Scheduler)

    调度器 什么是调度器?调度器是当开始订阅时,控制通知推送的.它由三个部分组成. 调度是数据结构.它知道怎样在优先级或其他标准去存储和排队运行的任务 调度器是一个执行上下文.它表示任务在何时何地执行(例 ...

随机推荐

  1. iOS全埋点解决方案-UITableView和UICollectionView点击事件

    前言 在 $AppClick 事件采集中,还有两个比较特殊的控件: UITableView •UICollectionView 这两个控件的点击事件,一般指的是点击 UITableViewCell 和 ...

  2. Java学习day5

    API即应用程序编程接口,Java所包含的方法以及类很多,如果要使用他们就得了解这些的API如何使用,因为API多而复杂,我们可以通过帮助文档查询 与c/c++类似,Java通过Scanner类就可以 ...

  3. 设置网站标题时找不到index.html问题解决

    都知道,修改网站标题在根目录index.html里修改.但是在vue3更新后,index.html就没有放这里了,放到了public中.去public中一眼就能看到.我也是去那里就找到了.

  4. 小程序 text标签内的文字竖着排列

    html:   <view><text>活动规则</text></view>   css: view {   height: 135rpx;   wid ...

  5. 2021.08.09 P6037 Ryoku的探索(基环树)

    2021.08.09 P6037 Ryoku的探索(基环树) P6037 Ryoku 的探索 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 重点: 1.树的性质 2.基环树的性质 ...

  6. 数据结构 - AVL 树

    简介 基本概念 AVL 树是最早被发明的自平衡的二叉查找树,在 AVL 树中,任意结点的两个子树的高度最大差别为 1,所以它也被称为高度平衡树,其本质仍然是一颗二叉查找树. 结合二叉查找树,AVL 树 ...

  7. 封闭的一个多月,老菜鸟的 机械手和AGV 自动搬运小项目总结

    最近上海疫情严重,闲赋在家无事可做,手机里不断的推送一些无脑的谩骂声音,索性找点事情做,将3月份实施的一个自动搬运小项目做一个简单的汇总,便于今后项目实施中积累一些经验.项目需求非常简单,因为能力有限 ...

  8. nginx从入门到入坟

    目录 1.nginx下载安装 2.启动命令 3.服务脚本 4.nginx目录说明 5.nginx配置文件 6.虚拟主机与域名配置和站点配置 6.1server_name配置规则 7.反向代理负载均衡配 ...

  9. Django-ORM-连表正反操作

    一.A表男生,B表女生,C表关系 1通过A表查与某个男生有关系的所有女生 思想1:在A表中确认男生后,通过反查到C表,获取相关内容(QuerySet),然后再跨到B表获取所有女生信息. obj=mod ...

  10. 干货 | Nginx负载均衡原理及配置实例

    一个执着于技术的公众号 Nginx系列导读 给小白的 Nginx 10分钟入门指南 Nginx编译安装及常用命令 完全卸载nginx的详细步骤 Nginx 配置文件详解 理解正向代理与反向代理的区别 ...