权重 ak的确定——频数统计法

选取正整数p的方法

画箱形图   取1/4与3/4的距离(IQR)  ceil()取整

代码:

import numpy as np
def frequency(matrix,p):
'''
频数统计法确定权重
:param matrix: 因素矩阵
:param p: 分组数
:return: 权重向量
'''
A = np.zeros((matrix.shape[0]))
for i in range(0, matrix.shape[0]):
## 根据频率确定频数区间列表
row = list(matrix[i, :])
maximum = max(row)
minimum = min(row)
gap = (maximum - minimum) / p
row.sort()
group = []
item = minimum
while(item < maximum):
group.append([item, item + gap])
item = item + gap
print(group)
# 初始化一个数据字典,便于记录频数
dataDict = {}
for k in range(0, len(group)):
dataDict[str(k)] = 0
# 判断本行的每个元素在哪个区间内,并记录频数
for j in range(0, matrix.shape[1]):
for k in range(0, len(group)):
if(matrix[k, j] >= group[k][0]):
dataDict[str(k)] = dataDict[str(k)] + 1
break
print(dataDict)
# 取出最大频数对应的key,并以此为索引求组中值
index = int(max(dataDict,key=dataDict.get))
mid = (group[index][0] + group[index][1]) / 2
print(mid)
A[i] = mid
A = A / sum(A[:]) # 归一化
return A

权重 ak的确定——模糊层次分析法

代码:

import numpy as np

def AHP(matrix):
if isConsist(matrix):
lam, x = np.linalg.eig(matrix)
return x[0] / sum(x[0][:])
else:
print("一致性检验未通过")
return None def isConsist(matrix):
'''
:param matrix: 成对比较矩阵
:return: 通过一致性检验则返回true,否则返回false
'''
n = np.shape(matrix)[0]
a, b = np.linalg.eig(matrix)
maxlam = a[0].real
CI = (maxlam - n) / (n - 1)
RI = [0, 0, 0.58, 0.9, 1.12, 1.24, 1.32, 1.41, 1.45]
CR = CI / RI[n - 1]
if CR < 0.1:
return True, CI, RI[n - 1]
else:
return False, None, None

import numpy as np

def appraise(criterionMatrix, targetMatrixs, relationMatrixs):
'''
:param criterionMatrix: 准则层权重矩阵
:param targetMatrix: 指标层权重矩阵列表
:param relationMatrixs: 关系矩阵列表
:return:
'''
R = np.zeros((criterionMatrix.shape[1], relationMatrixs[0].shape[1]))
for index in range(0, len(targetMatrixs)):
row = mul_mymin_operator(targetMatrixs[index], relationMatrixs[index])
R[index] = row
B = mul_mymin_operator(criterionMatrix, R)
return B / sum(B[:]) def mul_mymin_operator(A, R):
B = np.zeros(1, R.shape[1])
for column in range(1, R.shape[1]):
list = []
for row in range(1, R.shape[0]):
list = list.append(A[row] * R[row, column])
B[0, column] = mymin(list)
return B def mymin(list):
global temp
for index in range(1, len(list)):
if index == 1:
temp = min(1, list[0] + list[1])
else:
temp = min(1, temp + list[index])
return temp

基于python的数学建模---多模糊评价的更多相关文章

  1. 使用Python scipy linprog 线性规划求最大值或最小值(使用Python学习数学建模笔记)

    函数格式 scipy.optimize.linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None, method='simp ...

  2. Python数学建模-01.新手必读

    Python 完全可以满足数学建模的需要. Python 是数学建模的最佳选择之一,而且在其它工作中也无所不能. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数学 ...

  3. Python数学建模-02.数据导入

    数据导入是所有数模编程的第一步,比你想象的更重要. 先要学会一种未必最佳,但是通用.安全.简单.好学的方法. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数据导入 ...

  4. Python小白的数学建模课-A1.国赛赛题类型分析

    分析赛题类型,才能有的放矢. 评论区留下邮箱地址,送你国奖论文分析 『Python小白的数学建模课 @ Youcans』 带你从数模小白成为国赛达人. 1. 数模竞赛国赛 A题类型分析 年份 题目 要 ...

  5. Python小白的数学建模课-A3.12 个新冠疫情数模竞赛赛题与点评

    新冠疫情深刻和全面地影响着社会和生活,已经成为数学建模竞赛的背景帝. 本文收集了与新冠疫情相关的的数学建模竞赛赛题,供大家参考,欢迎收藏关注. 『Python小白的数学建模课 @ Youcans』带你 ...

  6. Python小白的数学建模课-07 选址问题

    选址问题是要选择设施位置使目标达到最优,是数模竞赛中的常见题型. 小白不一定要掌握所有的选址问题,但要能判断是哪一类问题,用哪个模型. 进一步学习 PuLP工具包中处理复杂问题的字典格式快捷建模方法. ...

  7. Python小白的数学建模课-09 微分方程模型

    小白往往听到微分方程就觉得害怕,其实数学建模中的微分方程模型不仅没那么复杂,而且很容易写出高水平的数模论文. 本文介绍微分方程模型的建模与求解,通过常微分方程.常微分方程组.高阶常微分方程 3个案例手 ...

  8. Python小白的数学建模课-B5. 新冠疫情 SEIR模型

    传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. 考虑存在易感者.暴露者.患病者和康复者四类人群,适用于具有潜伏期.治愈后获得终身免疫的传染病. 本 ...

  9. Python小白的数学建模课-B6. 新冠疫情 SEIR 改进模型

    传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. SEIR 模型考虑存在易感者.暴露者.患病者和康复者四类人群,适用于具有潜伏期.治愈后获得终身免疫 ...

  10. Python小白的数学建模课-B4. 新冠疫情 SIR模型

    Python小白的数学建模课-B4. 新冠疫情 SIR模型 传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. SIR 模型将人群分为易感者(S类). ...

随机推荐

  1. 引擎之旅 Chapter.2 线程库

    预备知识可参考我整理的博客 Windows编程之线程:https://www.cnblogs.com/ZhuSenlin/p/16662075.html Windows编程之线程同步:https:// ...

  2. Elasticsearch高级检索之使用单个字母数字进行分词N-gram tokenizer(不区分大小写)【实战篇】

    一.前言 小编最近在做到一个检索相关的需求,要求按照一个字段的每个字母或者数字进行检索,如果是不设置分词规则的话,英文是按照单词来进行分词的. 小编以7.6.0版本做的功能哈,大家可以根据自己的版本去 ...

  3. Centos7新增静态路由

    文章转载自:https://blog.51cto.com/loong576/2417561 环境说明: 一.临时方式 1. 查看路由和ip [root@centos7 ~]# route -n Ker ...

  4. mysqld_exporter参数信息

    [root@database03 mysqld_exporter]# ./mysqld_exporter --help usage: mysqld_exporter [<flags>] F ...

  5. Filebeat 调试

    默认情况下,Filebeat将其所有输出发送到syslog. 在前台运行Filebeat时,可以使用-e命令行标志将输出重定向到标准错误. 例如: filebeat -e 默认配置文件是filebea ...

  6. Jenkins 中使用 Git Parameter 插件动态获取 Git 的分支

  7. PAT乙级 1024 科学计数法

    思路 1.尝试失败:一开始想打算把结果直接存在一个字符串中,后来发现当指数大于0的时候还需要分别考虑两种情况,工程量巨大,尝试失败,于是借鉴了其他大佬思路,写出了ac代码 2.ac思路:首先取指数的绝 ...

  8. PAT (Basic Level) Practice 1017 A除以B 分数 20

    本题要求计算 A/B,其中 A 是不超过 1000 位的正整数,B 是 1 位正整数.你需要输出商数 Q 和余数 R,使得 A=B×Q+R 成立. 输入格式: 输入在一行中依次给出 A 和 B,中间以 ...

  9. PAT (Basic Level) Practice 1014 福尔摩斯的约会 分数 20

    大侦探福尔摩斯接到一张奇怪的字条: 我们约会吧! 3485djDkxh4hhGE 2984akDfkkkkggEdsb s&hgsfdk d&Hyscvnm   大侦探很快就明白了,字 ...

  10. 基于Qt Designer和PyQt5的桌面软件开发--环境搭建和入门例子

      本文介绍了如何使用技术栈PyCharm+Qt Designer+PyQt5来开发桌面软件,从环境搭建.例子演示到对容易混淆概念的解释.文中用到的全部软件+代码下载链接为:https://url39 ...