【HDOJ】2295 Radar
DLX+二分。
/* 2295 */
#include <iostream>
#include <string>
#include <map>
#include <queue>
#include <set>
#include <stack>
#include <vector>
#include <deque>
#include <algorithm>
#include <cstdio>
#include <cmath>
#include <ctime>
#include <cstring>
#include <climits>
#include <cctype>
#include <cassert>
#include <functional>
#include <iterator>
#include <iomanip>
using namespace std;
//#pragma comment(linker,"/STACK:102400000,1024000") #define sti set<int>
#define stpii set<pair<int, int> >
#define mpii map<int,int>
#define vi vector<int>
#define pii pair<int,int>
#define vpii vector<pair<int,int> >
#define rep(i, a, n) for (int i=a;i<n;++i)
#define per(i, a, n) for (int i=n-1;i>=a;--i)
#define clr clear
#define pb push_back
#define mp make_pair
#define fir first
#define sec second
#define all(x) (x).begin(),(x).end()
#define SZ(x) ((int)(x).size())
#define lson l, mid, rt<<1
#define rson mid+1, r, rt<<1|1 const double eps = 1e-;
const int maxn = ;
int N, M, K;
double cx[maxn], cy[maxn];
double rx[maxn], ry[maxn];
bool visit[maxn]; typedef struct {
static const int maxc = ;
static const int maxr = ;
static const int maxn = maxr * maxc; int n, sz;
int S[maxc]; int row[maxn], col[maxn];
int L[maxn], R[maxn], U[maxn], D[maxn]; int ansd; void init(int n_) {
n = n_; rep(i, , n+) {
L[i] = i - ;
R[i] = i + ;
U[i] = i;
D[i] = i;
col[i] = i;
} L[] = n;
R[n] = ; ansd = INT_MAX;
sz = n+;
memset(S, , sizeof(S));
} void addRow(int r, vi columns) {
int first = sz;
int size = SZ(columns); rep(i, , size) {
int c = columns[i]; L[sz] = sz - ;
R[sz] = sz + ; D[sz] = c;
U[sz] = U[c];
D[U[c]] = sz;
U[c] = sz; row[sz] = r;
col[sz] = c; ++S[c];
++sz;
} L[first] = sz - ;
R[sz - ] = first;
} void remove(int c) {
for (int i=D[c]; i!=c; i=D[i]) {
L[R[i]] = L[i];
R[L[i]] = R[i];
--S[col[i]];
}
} void restore(int c) {
for (int i=D[c]; i!=c; i=D[i]) {
L[R[i]] = i;
R[L[i]] = i;
++S[col[i]];
}
} int H() {
int ret = ; memset(visit, false, sizeof(visit));
for (int i=R[]; i!=; i=R[i]) {
if (visit[col[i]])
continue;
++ret;
visit[col[i]] = true;
for (int j=D[i]; j!=i; j=D[j]) {
for (int k=R[j]; k!=j; k=R[k]) {
visit[col[k]] = true;
}
}
} return ret;
} void dfs(int d) {
int delta = H(); if (delta+d>=ansd || d+delta>K)
return ; if (R[] == ) {
ansd = min(ansd, d);
return ;
} int c = R[];
for (int i=R[]; i!=; i=R[i]) {
if (S[i] < S[c])
c = i;
} for (int i=D[c]; i!=c; i=D[i]) {
remove(i);
for (int j=R[i]; j!=i; j=R[j]) {
remove(j);
}
dfs(d + );
if (ansd <= K)
return ;
for (int j=L[i]; j!=i; j=L[j]) {
restore(j);
}
restore(i);
}
} } DLX; DLX solver; double Length(int j, int i) {
return sqrt((cx[i]-rx[j])*(cx[i]-rx[j]) + (cy[i]-ry[j])*(cy[i]-ry[j]));
} bool judge(double bound) {
memset(visit, false, sizeof(visit));
solver.init(N); rep(i, , M+) {
vi columns;
int cnt = ;
rep(j, , N+) {
if (Length(i, j) <= bound) {
columns.pb(j);
visit[j] = true;
++cnt;
}
} if (SZ(columns) > ) {
solver.addRow(i, columns);
}
} rep(j, , N+) {
if (!visit[j]) {
#ifndef ONLINE_JUDGE
// printf("ansd = %d\n", solver.ansd);
#endif
return false;
}
} solver.dfs(); #ifndef ONLINE_JUDGE
// printf("ansd = %d\n", solver.ansd);
#endif
return solver.ansd<=K;
} int main() {
ios::sync_with_stdio(false);
#ifndef ONLINE_JUDGE
freopen("data.in", "r", stdin);
freopen("data.out", "w", stdout);
#endif double ans;
double l, r, mid;
int t; scanf("%d", &t);
while (t--) {
scanf("%d %d %d", &N, &M, &K);
rep(i, , N+)
scanf("%lf %lf", &cx[i], &cy[i]);
rep(i, , M+)
scanf("%lf %lf", &rx[i], &ry[i]);
l = ;
r = ans = 2000.0;
while (r >= l) {
mid = (r + l) / 2.0;
if (judge(mid)) {
ans = min(ans, mid);
r = mid - eps;
} else {
l = mid + eps;
}
}
printf("%.06lf\n", ans);
} #ifndef ONLINE_JUDGE
printf("time = %d.\n", (int)clock());
#endif return ;
}
【HDOJ】2295 Radar的更多相关文章
- 【HDOJ】4729 An Easy Problem for Elfness
其实是求树上的路径间的数据第K大的题目.果断主席树 + LCA.初始流量是这条路径上的最小值.若a<=b,显然直接为s->t建立pipe可以使流量最优:否则,对[0, 10**4]二分得到 ...
- 【HDOJ】【3506】Monkey Party
DP/四边形不等式 裸题环形石子合并…… 拆环为链即可 //HDOJ 3506 #include<cmath> #include<vector> #include<cst ...
- 【HDOJ】【3516】Tree Construction
DP/四边形不等式 这题跟石子合并有点像…… dp[i][j]为将第 i 个点开始的 j 个点合并的最小代价. 易知有 dp[i][j]=min{dp[i][j] , dp[i][k-i+1]+dp[ ...
- 【HDOJ】【3480】Division
DP/四边形不等式 要求将一个可重集S分成M个子集,求子集的极差的平方和最小是多少…… 首先我们先将这N个数排序,容易想到每个自己都对应着这个有序数组中的一段……而不会是互相穿插着= =因为交换一下明 ...
- 【HDOJ】【2829】Lawrence
DP/四边形不等式 做过POJ 1739 邮局那道题后就很容易写出动规方程: dp[i][j]=min{dp[i-1][k]+w[k+1][j]}(表示前 j 个点分成 i 块的最小代价) $w(l, ...
- 【HDOJ】【3415】Max Sum of Max-K-sub-sequence
DP/单调队列优化 呃……环形链求最大k子段和. 首先拆环为链求前缀和…… 然后单调队列吧<_<,裸题没啥好说的…… WA:为毛手写队列就会挂,必须用STL的deque?(写挂自己弱……s ...
- 【HDOJ】【3530】Subsequence
DP/单调队列优化 题解:http://www.cnblogs.com/yymore/archive/2011/06/22/2087553.html 引用: 首先我们要明确几件事情 1.假设我们现在知 ...
- 【HDOJ】【3068】最长回文
Manacher算法 Manacher模板题…… //HDOJ 3068 #include<cstdio> #include<cstring> #include<cstd ...
- 【HDOJ】【1512】Monkey King
数据结构/可并堆 啊……换换脑子就看了看数据结构……看了一下左偏树和斜堆,鉴于左偏树不像斜堆可能退化就写了个左偏树. 左偏树介绍:http://www.cnblogs.com/crazyac/arti ...
随机推荐
- Windows7 下安装ORACLE 11G(遇到的问题)
首先官网下载ORACLE11G(我的电脑是32位) 下载到磁盘后(解压成为一个文件有个DATABASE文件夹) 点击安装 只安装数据库软件(之后再创建数据库:因为容易出问题) 之后的安装过程就跟着走就 ...
- 12天学好C语言——记录我的C语言学习之路(Day 6)
12天学好C语言--记录我的C语言学习之路 Day 6: 今天,我们要开始学习数组了. //①数组部分,数组的大小不能够动态定义.如下: //int n; scanf("%d,& ...
- Headfirst设计模式的C++实现——迭代器(Iterator)
iterator.h #ifndef _ITERATOR_H_ #define _ITERATOR_H_ #include "menu_item.h" class Iterator ...
- [DevExpress]SplitContainerControl使用小计
1.修改成纵向分割 Horizontal = false; 2.设置伸缩箭头 3.固定某个PANEL大小 最大化后依然保持着比例 4.隐藏某个PANEL splitContainerControl1. ...
- 没用调用flush导致的数据保存丢失
在将字符串保存到文件时,我们采有下面的写法,大部分情况下,都可以直接将数据保存到文件中, using (var fs = System.IO.File.Create(path)) { var sw = ...
- 51nod贪心算法入门-----活动安排问题2
题目大意就是给几个活动,问要几个教室能够弄完. 这个题目的想法就是把活动的开始——结束的时间看做是数轴上的一段线段,教室的个数就是在某点的时间厚度,求最大的时间厚度就是所需要的教室个数. #inclu ...
- 百度地图API应用实践(一) —— 栅格图(草稿)
概述 运用百度地图JS API,实现了在百度地图上绘制栅格并按统计值渲染栅格颜色.实现的过程是不断补习的过程,其中用到一些技术,是个人首次尝试.包括:(1)简单的jQuery语法,并实现Ajax:(2 ...
- RSA使用 常识
1公钥加密,私钥解密 OK反过来, 私钥加密,公钥解密 也OK 2 使用RSA加密 对称算法的key ,用对称算法加密 消息.伙伴收到消息后,RSA解密出 对称算法的key,再用这个key去解密消息 ...
- 关于TFTLCD硬件接口和驱动的问题
在设计TFTLCD液晶硬件驱动电路的时候,我们会发现TFTLCD裸屏(买来的最初元件)的接口并非相似,所以导致驱动电路设计需要有些差别. TFTLCD液晶的本质 ...
- 2.MVC框架开发(视图开发----基础语法)
1.区别普通的html,在普通的html中不能将控制器里面的数据展示在html中. 在MVC框架中,它提供了一种视图模板(就是结合普通的html标签并能将控制器里传出来的数据进行显示) 视图模板特性: ...