HDU-3854 LOOPS
http://acm.hdu.edu.cn/showproblem.php?pid=3853
LOOPS
Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 125536/65536 K (Java/Others)
Total Submission(s): 2263 Accepted Submission(s):
911
Girl).
Homura wants to help her friend Madoka save the world. But because
of the plot of the Boss Incubator, she is trapped in a labyrinth called
LOOPS.
The planform of the
LOOPS is a rectangle of R*C grids. There is a portal in each grid except the
exit grid. It costs Homura 2 magic power to use a portal once. The portal in a
grid G(r, c) will send Homura to the grid below G (grid(r+1, c)), the grid on
the right of G (grid(r, c+1)), or even G itself at respective probability (How
evil the Boss Incubator is)!
At the beginning Homura is in the top left
corner of the LOOPS ((1, 1)), and the exit of the labyrinth is in the bottom
right corner ((R, C)). Given the probability of transmissions of each portal,
your task is help poor Homura calculate the EXPECT magic power she need to
escape from the LOOPS.
R, C <= 1000).
The following R lines, each contains C*3 real numbers,
at 2 decimal places. Every three numbers make a group. The first, second and
third number of the cth group of line r represent the probability of
transportation to grid (r, c), grid (r, c+1), grid (r+1, c) of the portal in
grid (r, c) respectively. Two groups of numbers are separated by 4
spaces.
It is ensured that the sum of three numbers in each group is 1,
and the second numbers of the rightmost groups are 0 (as there are no grids on
the right of them) while the third numbers of the downmost groups are 0 (as
there are no grids below them).
You may ignore the last three numbers of
the input data. They are printed just for looking neat.
The answer is
ensured no greater than 1000000.
Terminal at EOF
representing the expect magic power Homura need to escape from the
LOOPS.
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
double e[][];
struct node
{
double p1,p2,p3;
}a[][];
int main()
{
int r,c,i,j;
while(~scanf("%d%d",&r,&c))
{
memset(e,,sizeof(e));
for(i=;i<=r;i++)
for(j=;j<=c;j++)
{
scanf("%lf%lf%lf",&a[i][j].p1,&a[i][j].p2,&a[i][j].p3);
}
e[r][c]=;
for(i=r;i>=;i--)
{
for(j=c;j>=;j--)
{
if(i==r&&j==c)
continue;
if(a[i][j].p1==)
continue;
e[i][j]=double(a[i][j].p2*e[i][j+]+a[i][j].p3*e[i+][j]+)/double(-a[i][j].p1); }
}
printf("%.3lf\n",e[][]);
}
return ;
}
HDU-3854 LOOPS的更多相关文章
- HDU 3853 LOOPS 期望dp
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3853 LOOPS Time Limit: 15000/5000 MS (Java/Others)Me ...
- hdu 3853 LOOPS(概率 dp 期望)
Problem Description Akemi Homura is a Mahou Shoujo (Puella Magi/Magical Girl). Homura wants to help ...
- HDU 3853 LOOPS 概率DP入门
LOOPS Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 125536/65536 K (Java/Others)Total Sub ...
- HDU 3853 LOOPS:期望dp【网格型】
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3853 题意: 有一个n*m的网格. 给出在每个格子时:留在原地.向右走一格,向下走一格的概率. 每走一 ...
- hdu 3853 LOOPS (概率dp 逆推求期望)
题目链接 LOOPS Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 125536/65536 K (Java/Others)Tota ...
- HDU 3854 Glorious Array(树状数组)
题意:给一些结点,每个结点是黑色或白色,并有一个权值.定义两个结点之间的距离为两个结点之间结点的最小权值当两个结点异色时,否则距离为无穷大.给出两种操作,一种是将某个结点改变颜色,另一个操作是询问当前 ...
- hdu 3853 LOOPS(基础DP求期望)
题目大意 有一个人被困在一个 R*C(2<=R,C<=1000) 的迷宫中,起初他在 (1,1) 这个点,迷宫的出口是 (R,C).在迷宫的每一个格子中,他能花费 2 个魔法值开启传送通道 ...
- hdu 3853 LOOPS 概率DP
简单的概率DP入门题 代码如下: #include<iostream> #include<stdio.h> #include<algorithm> #include ...
- HDU 3853 LOOPS
题意:对于每一格,都可以往右走,原地不走,往下走,概率分别为a[i],b[i],c[i](每一个格子与其他格子的概率不一定相同).在R*C的棋盘上(输入数据保证不会走出棋盘),求从(0, 0)走到(R ...
- HDU 3853 LOOPS 可能性dp(水
在拐~ #include <stdio.h> #include <cstring> #include <iostream> #include <map> ...
随机推荐
- gitlab 配置 ssh && ubuntu
1,在你的电脑上生成密钥ssh-keygen -t rsa -C "youeamil@explode.com" 2,在 ubuntu系统中 ~/.ssh目录中生成了两个文件id_r ...
- (转)spring ioc原理(看完后大家可以自己写一个spring)
最近,买了本Spring入门书:spring In Action .大致浏览了下感觉还不错.就是入门了点.Manning的书还是不错的,我虽然不像哪些只看Manning书的人那样专注于Manning, ...
- iOS RegexKitLite的使用以及常用的正则表达式
1.去RegexKitLite下载类库,解压出来会有一个例子包及2个文件,其实用到的就这2个文件,添加到工程中. 2.工程中添加libicucore.dylib frameworks. 3.现在所有的 ...
- 一天学完UFLDL
学习UFLDL笔记 第一节 神经网络 神经元长这样 大写W看着有点不习惯.. 激活函数, 就是上面式子中的f. 可以选 sigmoid函数(或者叫 logistic回归,对数几率函数),反正就是这样一 ...
- php之工厂模式
工厂类是指包含一个专门用来创建其他对象的方法的类,工厂类在多态性编程实践中是至关重要的,它允许动态的替换类,修改配置,通常会使应用程序更加灵活,熟练掌握工厂模式高级PHP开发人员是很重要的. 工厂模式 ...
- oracle系列索引
今天终于把oracle入门的知识通篇过了一遍. 一篇文章没有写,先做个索引.把知识系统的梳理下. 数据库基本概念-oracle介绍 oracle安装,配置,启动 oracle工具 sqlplus 用户 ...
- Linux 多用户和多用户边界
1. 需求背景 2. 多用户的边界: 独立的工作目录 3. 多用户的边界:可操作/访问的资源 4. 多用户的边界: 可执行的操作 5. 多用户的特性标识: UID和GID -------------- ...
- 使用pyinstaller 2.1将python打包并添加版本信息和图标
最近用 wxpython写了一个小的脚本,因为想要发布给没有装python和wxpython的人使用,遂决定使用pyinstaller 2.1进行打包. 其中遇到几个问题: 1,给打包的文件添加图标 ...
- 【转】深入 char * ,char ** ,char a[ ] ,char *a[] 内核
原文出处:http://blog.csdn.net/daiyutage/article/details/8604720 C语言中由于指针的灵活性,导致指针能代替数组使用,或者混合使用,这些导致了 ...
- Abstract Factory
工厂模式比较好理解,其实就是通过访问工厂返回单一的对象/多个对象.那么抽象工厂就是返回多个抽象对象.这意味工厂返回对象纵向的一个扩展.但是很多时候,抽象工厂是两个维度的扩展,比方说在数据库类型和表对象 ...