hdu 4622 Reincarnation(后缀数组)
题意:还是比较容易理解,给出一个字符串,最长2000,q个询问,每次询问[l,r]区间内有多少个不同的字串。
(为了与论文解释统一,这里解题思路里sa数组的值是从1到n,但其实代码中我的sa数组的值是从0到n-1)。
解题思路:09年的后缀数组论文里有一个类似的题,求一个字串的不同字串有多少个。问不同的字串有多少个,即问对于每一个后缀,它的所有前缀中,与其他后缀的前缀不同的有几个。解法是按rank从大到小将后缀一个个加进来,那么每加进一个后缀,将会增加n-sa[i]+1个前缀,但这些前缀中,有一些是之前出现过的,之前出现过的个数就是i与之前加进来的所有后缀的最长公共前缀的长度,很显然,就是height[i]。那么每次能获得的不同的字串的个数就是n-sa[i]+1-height[i]。比赛时,尝试的方法是将[l,r]构成一个新的字符串,直接进行一遍 da 的处理,但是超时了(据说有人过了,不可思议)。赛后进行改进,先对整个字符串进行一遍 da 处理(后缀数组基本处理),将rank,sa,height数组都处理出来。q个询问,一次次回答,刚开始我想到的是对[l,r]构成的后缀根据他们的rank进行排序,然后根据rank值进行类似论文问题的方法处理,后来也还是超时。但其实我们根本不用排序,因为我们之前已经处理除了rank数组和sa数组。我们用一个pos数组进行记录l到r区间出现的后缀,赋初值为-1,pos[i]表示排名第i的后缀是谁,与sa的意义相同,但这里我们只要l到r之间的后缀,所以对其他赋值为-1。然后按名次从1到n扫描下来,如果pos[i] == -1那么表示该名次下的后缀并不在[l,r]区间中,那么不做处理。否则就做类似论文题的方法进行处理。但这里要注意一个问题,对于加进来的一个在[l,r]后缀i,我们能获得的新的不同的前缀(即要获得的子串)个数为n-sa[i]+1-d,其中d并不是上面的height[i]了,因为对于height[i],有可能它的长度已经超过r-sa[i]+1(这是对于i后缀,能提供的最长长度)。所以d应该是对于i之前所有的加进来的后缀j,取max( min(lcp(j,i),min(r-j+1,r-i+1)) )。当然我们不能每次都枚举j,但我们只要每次都更新下这个d就好了。
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include <stdlib.h>
#define ll __int64
using namespace std ; const int maxn = 1111111 ; ll f[maxn] , g[maxn] ;
int wa[maxn] , wb[maxn] , wv[maxn] , ws[maxn] , pos[maxn] ;
struct suf
{
int sa[maxn] , hei[maxn] , rank[maxn] ; int cmp ( int *r , int i , int j , int l )
{
return r[i] == r[j] && r[i+l] == r[j+l] ;
} void da ( int *r , int n , int m )
{
int *x = wa , *y = wb , *t ;
int i , j , p ;
for ( i = 0 ; i < m ; i ++ ) ws[i] = 0 ;
for ( i = 0 ; i < n ; i ++ ) ws[x[i]=r[i]] ++ ;
for ( i = 1 ; i < m ; i ++ ) ws[i] += ws[i-1] ;
for ( i = n - 1 ; i >= 0 ; i -- ) sa[--ws[x[i]]] = i ;
for ( j = 1 , p = 1 ; p < n ; j *= 2 , m = p )
{
for ( p = 0 , i = n - j ; i < n ; i ++ ) y[p++] = i ;
for ( i = 0 ; i < n ; i ++ ) if ( sa[i] >= j ) y[p++] = sa[i] - j ;
for ( i = 0 ; i < m ; i ++ ) ws[i] = 0 ;
for ( i = 0 ; i < n ; i ++ ) ws[x[i]] ++ ;
for ( i = 1 ; i < m ; i ++ ) ws[i] += ws[i-1] ;
for ( i = n - 1 ; i >= 0 ; i -- ) sa[--ws[x[y[i]]]] = y[i] ;
for ( t = x , x = y , y = t , p = 1 , x[sa[0]] = 0 , i = 1 ; i < n ; i ++ )
x[sa[i]] = cmp ( y , sa[i-1] , sa[i] , j ) ? p - 1 : p ++ ;
}
int k = 0 ;
for ( i = 1 ; i < n ; i ++ ) rank[sa[i]] = i ;//这里sa[0]不用加进去了
for ( i = 0 ; i < n - 1 ; hei[rank[i++]] = k )//同上,rank[n-1]=0
for ( k ? k -- : 0 , j = sa[rank[i]-1] ; r[i+k] == r[j+k] ; k ++ ) ;
} int solve ( int n )
{
int ans = 0 , i ;
for ( i = 1 ; i <= n ; i ++ )
ans += n - sa[i] - hei[i] ;
return ans ;
} } arr ; int s1[maxn] , dp[20][2222] ;
void rmq ( int n )
{
int i , j ;
f[0] = 1 ;
for ( i = 1 ; i <= 15 ; i ++ )
f[i] = f[i-1] * 2 ;
g[0] = -1 ;
for ( i = 1 ; i < 2222 ; i ++ )
g[i] = g[i>>1] + 1 ;
for ( i = 1 ; f[i] <= n ; i ++ )
for ( j = 1 ; j + f[i] - 1 <= n ; j ++ )
dp[i][j] = min ( dp[i-1][j] , dp[i-1][j+f[i-1]] ) ;
}
int query ( int l , int r )
{
if ( l == r ) return dp[0][l] ;
if ( l > r ) swap ( l , r ) ;
int i , j , k ;
k = g[r-l+1] ;
return min ( dp[k][l] , dp[k][r-f[k]+1] ) ;
}
char s[maxn] ;
int num[maxn] ;
int main ()
{
int n , k , i , l , r ;
int cas ;
scanf ( "%d" , &cas ) ;
while ( cas -- )
{
int q ;
scanf ( "%s" , s ) ;
int len = strlen ( s ) ;
for ( i = 0 ; i < len ; i ++ ) s1[i] = s[i] ;
s1[len] = 0 ;
arr.da ( s1 , len + 1 , 555 ) ;
for ( i = 1 ; i <= len ; i ++ )
dp[0][i] = arr.hei[i] ;
rmq ( len ) ;
n = len ;
scanf ( "%d" , &q ) ;
while ( q -- )
{
scanf ( "%d%d" , &l , &r ) ;
int ans = ( r - l + 1 ) * ( r - l + 2) / 2 ;
for ( i = 0 ; i <= n ; i ++ ) pos[i] = -1 ;
for ( i = l ; i <= r ; i ++ )
pos[arr.rank[i-1]] = i - 1 ;
int last = -1 , d = 0 ;
for ( i = 1 ; i <= n ; i ++ )
{
if ( pos[i] != -1 )
{
if ( last != -1 )
{
int t = query ( arr.rank[last] + 1 , arr.rank[pos[i]] ) ;
d = min ( d , t ) ;
d = max ( d , min ( t , r - last ) ) ;
ans -= min ( d , r - pos[i] );
}
last = pos[i] ;
}
}
printf ( "%d\n" , ans ) ;
}
}
}
/* 100
baaba
100
3 4 100
hgtll
100
1 3 100
jghgtuklllsdd
100
3 5
*/
hdu 4622 Reincarnation(后缀数组)的更多相关文章
- HDU 4622 Reincarnation 后缀自动机 // BKDRHash(最优hash)
Reincarnation Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others) P ...
- HDU 4622 Reincarnation 后缀自动机
模板来源:http://blog.csdn.net/zkfzkfzkfzkfzkfzkfzk/article/details/9669747 解法参考:http://blog.csdn.net/dyx ...
- Hdu 4622 Reincarnation(后缀自动机)
/* 字符串长度较小, 可以离线或者直接与处理所有区间的答案 动态加入点的时候, 因为对于其他点的parent构造要么没有影响, 要么就是在两个节点之间塞入一个点, 对于minmax的贡献没有改变 所 ...
- HDU 4622 Reincarnation Hash解法详解
今天想学字符串hash是怎么弄的.就看到了这题模板题 http://acm.hdu.edu.cn/showproblem.php?pid=4622 刚开始当然不懂啦,然后就上网搜解法.很多都是什么后缀 ...
- hdu 4622 Reincarnation trie树+树状数组/dp
题意:给你一个字符串和m个询问,问你l,r这个区间内出现过多少字串. 连接:http://acm.hdu.edu.cn/showproblem.php?pid=4622 网上也有用后缀数组搞得. 思路 ...
- HDU 4622 Reincarnation (查询一段字符串的不同子串个数,后缀自动机)
Reincarnation Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others)To ...
- Reincarnation HDU - 4622 (后缀自动机)
Reincarnation \[ Time Limit: 3000 ms\quad Memory Limit: 65536 kB \] 题意 给出一个字符串 \(S\),然后给出 \(m\) 次查询, ...
- HDU-4622 Reincarnation 后缀数组 | Hash,维护和,扫描
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4622 题意:给一个字符串,询问某字串的不同字串的个数. 可以用后缀数组来解决,复杂度O(n).先求出倍 ...
- hdu 5769 Substring 后缀数组 + KMP
http://acm.hdu.edu.cn/showproblem.php?pid=5769 题意:在S串中找出X串出现的不同子串的数目? 其中1 <= |S| < $10^5$ 官方题解 ...
随机推荐
- Global & Local Variable in Python
Following code explain how 'global' works in the distinction of global variable and local variable. ...
- 实用lsof常用命令行
1, 使用 lsof 命令行列出所有打开的文件 # lsof 这可是一个很长的列表,包括打开的文件和网络 上述屏幕截图中包含很多列,例如 PID.user.FD 和 TYPE 等等. FD - Fil ...
- 学习Swift -- 错误处理
错误处理 错误处理是响应错误以及从错误中返回的过程.swift提供第一类错误支持,包括在运行时抛出,捕获,传送和控制可回收错误. 一些函数和方法不能总保证能够执行所有代码或产生有用的输出.可空类型用来 ...
- tyvj 1934 高精度
「Poetize3」Heaven Cow与God Bull From wwwwodddd 背景 Background __int64 ago,there's a heaven cow call ...
- Katu Puzzle
poj3678:http://poj.org/problem?id=3678 题意:给你一些数,然后这些要么是0要么是1,然后回给出一些数之间的and,or,xor的值,问你是否存在一组解. 题解:2 ...
- 【HDOJ】3696 Farm Game
SPFA求最短路径.见图的时候注意逆向建图. /* 3696 */ #include <iostream> #include <queue> #include <vect ...
- [LeetCode#261] Graph Valid Tree
Problem: Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair o ...
- 【转】Android Listener侦听的N种写法
原文网址:http://blog.csdn.net/ithomer/article/details/7489274 Android中,View的Listener方法,在是否使用匿名类匿名对象时,有各种 ...
- php5.4下安装ECshop出现错误的解决办法
转:http://www.programmernote.com/?p=65 1.安装是会提示 Warning: date_default_timezone_get(): It is not safe ...
- C++中的虚函数总结
一.什么是虚函数.纯虚函数.抽象基类 虚函数:在某基类中声明为 virtual 并在一个或多个派生类中被重新定 义的成员函数. 纯虚函数:是一种特殊的虚函数,使用virtual关键字,并且在其后面加上 ...