Ignatius and the Princess III

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 10312    Accepted Submission(s): 7318

Problem Description
"Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says.

"The second problem is, given an positive integer N, we define an equation like this:
  N=a[1]+a[2]+a[3]+...+a[m];
  a[i]>0,1<=m<=N;
My question is how many different equations you can find for a given N.
For example, assume N is 4, we can find:
  4 = 4;
  4 = 3 + 1;
  4 = 2 + 2;
  4 = 2 + 1 + 1;
  4 = 1 + 1 + 1 + 1;
so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"

 
Input
The input contains several test cases. Each test case contains a positive integer N(1<=N<=120) which is mentioned above. The input is terminated by the end of file.
 
Output
For each test case, you have to output a line contains an integer P which indicate the different equations you have found.
 
Sample Input
4
10
20
 
Sample Output
5
42
627
 
思路:一开始拿到这个题目以为是找规律,有递推关系什么的,最后找了好长时间没找到规律,上网查了一下才发现是用母函数做,就是把数的加法和指数乘法的幂的加法联系起来,母函数:G(x)=(1+x+x^2+x^3+x^4+.....)*(1+x^2+x^4+x^6+....)*(1+x^3+x^6+x^9+....)*... ,x^n的系数就是n的拆分方案数!其实这个不难理解,因为x^n的系数是多少就表明有多少个x^n相加得来,换句话说就是有多少种x的幂之和的拼凑方案,即本题所求。
 
#include<stdio.h>
int a[],b[]; // a[i]表示x^i的系数,为临时值,b[i]表示x^i的系数,为最终值;
int
main()
{

int
i,j,k,n;
for
(i =;i <=;i ++)
{

a[i] =;
b[i] =;
}

for
(i =;i <=;i ++)
{

for
(j =;j <=;j ++)
{

for
(k =;k+j <=; k += i)
a[k+j] += b[j]; //因为x^(k+j)是从x^j得来的,故它的系数应该在原有系数的数值的基础上加上x^j                 
                      的系数(这是关键的重点!!!这就是为什么我们要用两个数组的目的)
}

for
(j =;j <=;j ++)
{

b[j] = a[j];
a[j] =;
}
}

while
(~scanf("%d",&n))
printf("%d\n",b[n]);
  return 0;
}

Ignatius and the Princess III的更多相关文章

  1. hdu acm 1028 数字拆分Ignatius and the Princess III

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  2. hdu 1028 Ignatius and the Princess III(DP)

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  3. hdu 1028 Ignatius and the Princess III 简单dp

    题目链接:hdu 1028 Ignatius and the Princess III 题意:对于给定的n,问有多少种组成方式 思路:dp[i][j],i表示要求的数,j表示组成i的最大值,最后答案是 ...

  4. HDOJ 1028 Ignatius and the Princess III (母函数)

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  5. HDU1028 Ignatius and the Princess III 【母函数模板题】

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  6. Ignatius and the Princess III --undo

    Ignatius and the Princess III Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (J ...

  7. Ignatius and the Princess III(母函数)

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  8. HDU 1028 Ignatius and the Princess III 整数的划分问题(打表或者记忆化搜索)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1028 Ignatius and the Princess III Time Limit: 2000/1 ...

  9. HDU 1028 整数拆分问题 Ignatius and the Princess III

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

随机推荐

  1. C++ Union妙用(将列表初始化用于数组元素)

    Union是个不被注意的关键字,意为联合体,这是个诡异的名字.若不是为了继承C语言,它也不会出现在C++中(虽说,union在C++中得到了扩充,完成了接近类的功能).它的作用主要是节省内存空间,在嵌 ...

  2. java三大特性性:封装、继承和多态

    一.封装 封装是指隐藏对象的属性及实现细节,对外仅提供接口可见.封装实现了信息隐藏,利于软件复用.其优点是达到了模块化的标准,从而提高了代码的复用程度.在某种程度上,封装也大大改善了软件开发的可维护性 ...

  3. File的文件提取的小练习

    package com.java.Dmeo1.www; import java.io.File;import java.util.LinkedList;import java.util.TreeSet ...

  4. IDE开发<LER-Studio>(2)::登录模块

    软件中写登录模块是为了防止软件的恶意传播,内测阶段可以忽略登录. 以下为登录模块主要源代码: void CLoginDlg::OnBnClickedBtnLogin() { // TODO: Add ...

  5. MySQL分库分表备份脚本

    MySQL分库备份脚本 #脚本详细内容 [root@db02 scripts]# cat /server/scripts/Store_backup.sh #!/bin/sh MYUSER=root M ...

  6. sql的连接查询方式

    1 SQL join 用于根据两个或多个表中的列之间的关系,从这些表中查询数据. Join 和 Key 有时为了得到完整的结果,我们需要从两个或更多的表中获取结果.我们就需要执行 join. 数据库中 ...

  7. js获取url的get传值函数

    function getvl(name) { var reg = new RegExp("(^|\\?|&)"+ name +"=([^&]*)(\\s| ...

  8. php快递单号查询源码

    贴下记录下php查询快递单号的源码,能查询各种快递的快递单号记录,中通.圆通快递.顺丰快递等都不是问题.只需要在 爱快递(www.aikuaidi.cn)上面申请一个快递key即可,下面把源码分享下, ...

  9. SQL 多条件查询

    网上有不少人提出过类似的问题:“看到有人写了WHERE 1=1这样的SQL,到底是什么意思?”.其实使用这种用法的开发人员一般都是在使用动态组装的SQL.让我们想像如下的场景:用户要求提供一个灵活的查 ...

  10. 查看用户列表在Linux

    Linux下查看用户列表   原文地址:http://xiaod.in/read.php?77 俺的centos vps上面不知道添加了多少个账户,今天想清理一下,但是以前还未查看过linux用户列表 ...