一起啃PRML - 1.2.2 Expectations and covariances 期望和协方差
一起啃PRML - 1.2.2 Expectations and covariances 期望和协方差
@copyright 转载请注明出处 http://www.cnblogs.com/chxer/
涉及到概率的一个重要的操作是寻找函数的加权平均值。在概率分布p(x)下,函数f(x)的平均值被称为f(x)的期望(expectation),记作E[f]。对于一个离散变量,它的定义为:
因此平均值根据x的不同值的相对概率加权。在连续变量的情形下,期望以对应的概率密度的积分的形式表示:
类似的,我们有“条件期望”。无非就是把边缘概率变成条件概率。
在连续变量的情况下,我们把求和改成积分就好了。
如果我们给定有限数量的N 个点,这些点满足某个概率分布或者概率密度函数,那么期望可以通过平均的方式估计:
可以看出,当点数足够多,即N趋向于无穷大的时候,估计变得精准。
f(x)的方差被定义为:
方差是干什么的呢,它度量了f(x)在均值E[f(x)]附近变化性的大小。
我们可以把期望大概看成一个不错的平均值吧。
如果我们把方差展开,则会得到一个关于f(x)和f(x)2的期望的式子
。。。。。
。。。。。
。。。。。
我去,这一步的推导真是太66666666666了
太!6!了!
书里真是轻!描!淡!写!就过去了!!!!
太!6!了!
我们都是天才吗一步就能看懂!!!
太!6!了!
幸好请教了伟大的学姐,真是,无!力!吐!槽!
如果只是我的智商低,请忽略这一段,谢谢,关爱智障儿童。。。
期望的运算还真是有讲究。
书里轻描淡写的展开实际过程应该是:
其实就是几个运算律来回用:
E[A-B]=E[A]-E[B]
E[E[A]]=E[A]
E[A*B]=E[A]*E[B] (A,B相互独立时)
行吧。我服了。
要是整本书都是这些“展开”,那真是要死了。
作为一个只有高一数学基础的中学生已经很难了好不好。。。
好我们继续。
当然了,我们不仅可以关心函数,更可以关心我们的自变量本身,于是有:
有一个变量的方差,我们就有两个变量的方差,在这里我们称之为“协方差”,它是这么定义的:
看起来和方差长得一模一样。同理可以展开。
那么协方差是干什么用的呢?它表示在多大程度上x和y会共同变化。也就是说,如果x,y相互独立,x和y的协方差就是0。还记得篮子和苹果的例子吗?
有两个变量的协方差,我们就有向量的协方差,它是这么定义的:
可以看出,两个向量的协方差是个矩阵。每两个元素一一对应求协方差。
当这两个向量长得一样的时候,其实就是求自己和自己的协方差,我们有一个偷懒的记号:
那么这个表示一个向量内元素之间共同变化的程度。等以后配合上实例再谈这些应该会更好一些。
一起啃PRML - 1.2.2 Expectations and covariances 期望和协方差的更多相关文章
- 一起啃PRML - 1.2.4 The Gaussian distribution 高斯分布 正态分布
一起啃PRML - 1.2.4 The Gaussian distribution 高斯分布 正态分布 @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ ...
- 一起啃PRML - 1.2.3 Bayesian probabilities 贝叶斯概率
一起啃PRML - 1.2.3 Bayesian probabilities 贝叶斯概率 @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ 这一节简单讲 ...
- 一起啃PRML - 1.2.1 Probability densities 概率密度
一起啃PRML - 1.2.1 Probability densities @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ 我们之前一直在讨论“谁取到 ...
- 一起啃PRML - 1.2 Probability Theory 概率论
一起啃PRML - 1.2 Probability Theory @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ A key concept in t ...
- 一起啃PRML - 1.1 Example: Polynomial Curve Fitting 多项式曲线拟合
一起啃PRML - 1.1 Example: Polynomial Curve Fitting @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ 前言: ...
- 一起啃PRML - 1 Introduction 绪论
一起啃PRML - 1 Introduction @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ 这一部分主要是介绍一下Pattern Recogni ...
- 一起啃PRML - Preface 前言
一起啃PRML - 前言 Preface @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ PRML,Pattern Recognition and M ...
- PRML读书会第十二章 Continuous Latent Variables(PCA,Principal Component Analysis,PPCA,核PCA,Autoencoder,非线性流形)
主讲人 戴玮 (新浪微博: @戴玮_CASIA) Wilbur_中博(1954123) 20:00:49 我今天讲PRML的第十二章,连续隐变量.既然有连续隐变量,一定也有离散隐变量,那么离散隐变量是 ...
- PRML读书笔记——Introduction
1.1. Example: Polynomial Curve Fitting 1. Movitate a number of concepts: (1) linear models: Function ...
随机推荐
- 软件工程——UML简介
UML概述: UML是对OMT(对象建模技术).Booth(Booch方法)以及OOSE(面向对象的软件工程)等记号系统实施统一工作后得到的一种记号系统. UML(Unified Modeling L ...
- 各种排序算法及c语言实现
插入排序O(n^2) 冒泡排序 O(n^2) 选择排序 O(n^2) 快速排序 O(n log n) 堆排序 O(n log n) 归并排序 O(n log n) 希尔排序 O(n^1.25) 1.插 ...
- DLL中导出STL模板类的问题
接上一篇. 上一篇的dll在编译过程中一直有一个警告warning C4251: ‘CLASS_TEST::m_structs’ : class ‘std::vector<_Ty>’ ne ...
- WordLight: highlights all occurrences of a selected text for VS2008
https://visualstudiogallery.msdn.microsoft.com/ad686131-47d4-4c13-ada2-5b1a9019fb6f About This is a ...
- c#对象初始化
class test:IEquatable<test> { public int aa { get; set; } public string bb { get; set; } publi ...
- jQuery 源码分析2: jQuery.fn.init
//jQuery.fn.intit 中使用到的外部变量: // 判断是否为HTML标签或#id rquickExpr = /^(?:\s*(<[\w\W]+>)[^>]*|#([\w ...
- PAT_1007 素数对猜想
今天想更的那道题现在还没A出来.先把下午做的一道题更新了吧.快零点了.无奈啊. 问题描述: 让我们定义 dn 为:dn = pn+1 - pn,其中 pi 是第i个素数.显然有 d1=1 且对于n&g ...
- python3实现的web端json通信协议
之前有用python3实现过tcp协议的,后来又实现了http协议的通信,今天公司想做一个功能自动测试系统, 下午弄了一会,发现json格式的实现可以更简单一点,代码如下:简单解说一下,一般与服务器通 ...
- Android学习5—布局简介
Android界面的布局主要有四种,分别为RelativeLayout.LinearLayout.TableLayout.FrameLayout,接下来分别介绍这些布局如何使用(为了简单起见,接下来的 ...
- webstorm快捷方式
刚开始在使用webstrom的时候,不知道快捷方式,感觉自己把webstorm当做记事本使用,真的挺傻的,在朋友的指导下,原来webstorm有快捷方式 一.界面操作 快捷键 说明 ctrl+shif ...