一起啃PRML - 1.2.2 Expectations and covariances 期望和协方差
一起啃PRML - 1.2.2 Expectations and covariances 期望和协方差
@copyright 转载请注明出处 http://www.cnblogs.com/chxer/
涉及到概率的一个重要的操作是寻找函数的加权平均值。在概率分布p(x)下,函数f(x)的平均值被称为f(x)的期望(expectation),记作E[f]。对于一个离散变量,它的定义为:
因此平均值根据x的不同值的相对概率加权。在连续变量的情形下,期望以对应的概率密度的积分的形式表示:
类似的,我们有“条件期望”。无非就是把边缘概率变成条件概率。
在连续变量的情况下,我们把求和改成积分就好了。
如果我们给定有限数量的N 个点,这些点满足某个概率分布或者概率密度函数,那么期望可以通过平均的方式估计:
可以看出,当点数足够多,即N趋向于无穷大的时候,估计变得精准。
f(x)的方差被定义为:
方差是干什么的呢,它度量了f(x)在均值E[f(x)]附近变化性的大小。
我们可以把期望大概看成一个不错的平均值吧。
如果我们把方差展开,则会得到一个关于f(x)和f(x)2的期望的式子
。。。。。
。。。。。
。。。。。
我去,这一步的推导真是太66666666666了
太!6!了!
书里真是轻!描!淡!写!就过去了!!!!
太!6!了!
我们都是天才吗一步就能看懂!!!
太!6!了!
幸好请教了伟大的学姐,真是,无!力!吐!槽!
如果只是我的智商低,请忽略这一段,谢谢,关爱智障儿童。。。
期望的运算还真是有讲究。
书里轻描淡写的展开实际过程应该是:
其实就是几个运算律来回用:
E[A-B]=E[A]-E[B]
E[E[A]]=E[A]
E[A*B]=E[A]*E[B] (A,B相互独立时)
行吧。我服了。
要是整本书都是这些“展开”,那真是要死了。
作为一个只有高一数学基础的中学生已经很难了好不好。。。
好我们继续。
当然了,我们不仅可以关心函数,更可以关心我们的自变量本身,于是有:
有一个变量的方差,我们就有两个变量的方差,在这里我们称之为“协方差”,它是这么定义的:
看起来和方差长得一模一样。同理可以展开。
那么协方差是干什么用的呢?它表示在多大程度上x和y会共同变化。也就是说,如果x,y相互独立,x和y的协方差就是0。还记得篮子和苹果的例子吗?
有两个变量的协方差,我们就有向量的协方差,它是这么定义的:
可以看出,两个向量的协方差是个矩阵。每两个元素一一对应求协方差。
当这两个向量长得一样的时候,其实就是求自己和自己的协方差,我们有一个偷懒的记号:
那么这个表示一个向量内元素之间共同变化的程度。等以后配合上实例再谈这些应该会更好一些。
一起啃PRML - 1.2.2 Expectations and covariances 期望和协方差的更多相关文章
- 一起啃PRML - 1.2.4 The Gaussian distribution 高斯分布 正态分布
一起啃PRML - 1.2.4 The Gaussian distribution 高斯分布 正态分布 @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ ...
- 一起啃PRML - 1.2.3 Bayesian probabilities 贝叶斯概率
一起啃PRML - 1.2.3 Bayesian probabilities 贝叶斯概率 @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ 这一节简单讲 ...
- 一起啃PRML - 1.2.1 Probability densities 概率密度
一起啃PRML - 1.2.1 Probability densities @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ 我们之前一直在讨论“谁取到 ...
- 一起啃PRML - 1.2 Probability Theory 概率论
一起啃PRML - 1.2 Probability Theory @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ A key concept in t ...
- 一起啃PRML - 1.1 Example: Polynomial Curve Fitting 多项式曲线拟合
一起啃PRML - 1.1 Example: Polynomial Curve Fitting @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ 前言: ...
- 一起啃PRML - 1 Introduction 绪论
一起啃PRML - 1 Introduction @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ 这一部分主要是介绍一下Pattern Recogni ...
- 一起啃PRML - Preface 前言
一起啃PRML - 前言 Preface @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ PRML,Pattern Recognition and M ...
- PRML读书会第十二章 Continuous Latent Variables(PCA,Principal Component Analysis,PPCA,核PCA,Autoencoder,非线性流形)
主讲人 戴玮 (新浪微博: @戴玮_CASIA) Wilbur_中博(1954123) 20:00:49 我今天讲PRML的第十二章,连续隐变量.既然有连续隐变量,一定也有离散隐变量,那么离散隐变量是 ...
- PRML读书笔记——Introduction
1.1. Example: Polynomial Curve Fitting 1. Movitate a number of concepts: (1) linear models: Function ...
随机推荐
- c语言学习之基础知识点介绍(十一):字符串的介绍、使用
本节主要介绍c语言中的字符串的应用. 一:字符串介绍 因为c语言中没有像Java.C#那样的字符串类型,所以无法直接用字符串.需要借助数组来解决这个问题. /* 定义:把多个字符连在一起就叫字符串.但 ...
- powerbulider9.0在数据窗口中实现滚动到新添加行
powerbuilder9.0对数据窗口进行增加行操作,然后实现滚动到指定行时,应先滚动到指定行dw_1.scrolltorow( row),然后设置新添加的行为当前行dw_1.setrow( row ...
- oracle linux下oracle 10g启动EM、isqlplus及相关命令语法
转载:http://hancang2000.blog.sohu.com/139239421.html ORACLE_HOME/bin/emctl start dbconsole $ORACLE_HOM ...
- C#下如何用NPlot绘制期货股票K线图(2):读取数据文件让K线图自动更新
[内容介绍]上一篇介绍了K线图的基本绘制方法,但很不完善,本篇增加了它直接读取数据的功能,这对于金融市场的数据量大且又需要动态刷新功能的实现很重要. [实现方法] 1.需要一个数据文件,这里用的是直接 ...
- CSS当中color的四种表示方法
这是我的第一篇博客,所以写的东西会比较简单. css当中,好多地方都会用到color属性,用来使html内容丰富多彩,例如:background-color:border-color: 第一种表示法使 ...
- ZeroMemory和memset的区别
摘自百度百科,保存为学习使用 ZeroMemory,是美国微软公司的软件开发包SDK中的一个宏. 其作用是用0来填充一块内存区域. 声明 void ZeroMemory( PVOID Destinat ...
- (转)UIButton用法详解一
(注明 来源网址 http://blog.csdn.net/cheneystudy/article/details/8115092)这段代码动态的创建了一个UIButton,并且把相关常用的属性都列举 ...
- linux - 创建用户
apt-get update apt-get upgrade root@iZ28t2p7lz9Z:~# adduser cuiAdding user `cui' ...Adding new group ...
- 简单Linq笔记
Linq是.net 3.5才引入的 要引入命名空间System.Linq. Linq to XML要引入System.Xml.Linq Linq to ADO.NET要引入System.Data.L ...
- 国内各大互联网公司UED(用户体验设计)团队博客介绍
UED是什么UED = user experience design,用户体验设计.UED的通常理解,就是“我们做的一切都是为了呈现在您眼前的页面”.UED团队包括:交互设计师(Interactio ...