一起啃PRML - 1.2.2 Expectations and covariances 期望和协方差

@copyright 转载请注明出处 http://www.cnblogs.com/chxer/

涉及到概率的一个重要的操作是寻找函数的加权平均值。在概率分布p(x)下,函数f(x)的平均值被称为f(x)的期望(expectation),记作E[f]。对于一个离散变量,它的定义为:

因此平均值根据x的不同值的相对概率加权。在连续变量的情形下,期望以对应的概率密度的积分的形式表示:

类似的,我们有“条件期望”。无非就是把边缘概率变成条件概率。

在连续变量的情况下,我们把求和改成积分就好了。

如果我们给定有限数量的N 个点,这些点满足某个概率分布或者概率密度函数,那么期望可以通过平均的方式估计:

可以看出,当点数足够多,即N趋向于无穷大的时候,估计变得精准。

f(x)的方差被定义为:

方差是干什么的呢,它度量了f(x)在均值E[f(x)]附近变化性的大小。

我们可以把期望大概看成一个不错的平均值吧。

如果我们把方差展开,则会得到一个关于f(x)和f(x)2的期望的式子

。。。。。

。。。。。

。。。。。

我去,这一步的推导真是太66666666666了

太!6!了!

书里真是轻!描!淡!写!就过去了!!!!

太!6!了!

我们都是天才吗一步就能看懂!!!

太!6!了!

幸好请教了伟大的学姐,真是,无!力!吐!槽!

如果只是我的智商低,请忽略这一段,谢谢,关爱智障儿童。。。

期望的运算还真是有讲究。

书里轻描淡写的展开实际过程应该是:

其实就是几个运算律来回用:

E[A-B]=E[A]-E[B]

E[E[A]]=E[A]

E[A*B]=E[A]*E[B] (A,B相互独立时)

行吧。我服了。

要是整本书都是这些“展开”,那真是要死了。

作为一个只有高一数学基础的中学生已经很难了好不好。。。

好我们继续。

当然了,我们不仅可以关心函数,更可以关心我们的自变量本身,于是有:

有一个变量的方差,我们就有两个变量的方差,在这里我们称之为“协方差”,它是这么定义的:

看起来和方差长得一模一样。同理可以展开。

那么协方差是干什么用的呢?它表示在多大程度上x和y会共同变化。也就是说,如果x,y相互独立,x和y的协方差就是0。还记得篮子和苹果的例子吗?

有两个变量的协方差,我们就有向量的协方差,它是这么定义的:

可以看出,两个向量的协方差是个矩阵。每两个元素一一对应求协方差。

当这两个向量长得一样的时候,其实就是求自己和自己的协方差,我们有一个偷懒的记号:

那么这个表示一个向量内元素之间共同变化的程度。等以后配合上实例再谈这些应该会更好一些。

一起啃PRML - 1.2.2 Expectations and covariances 期望和协方差的更多相关文章

  1. 一起啃PRML - 1.2.4 The Gaussian distribution 高斯分布 正态分布

    一起啃PRML - 1.2.4 The Gaussian distribution 高斯分布 正态分布 @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ ...

  2. 一起啃PRML - 1.2.3 Bayesian probabilities 贝叶斯概率

    一起啃PRML - 1.2.3 Bayesian probabilities 贝叶斯概率 @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ 这一节简单讲 ...

  3. 一起啃PRML - 1.2.1 Probability densities 概率密度

    一起啃PRML - 1.2.1 Probability densities @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ 我们之前一直在讨论“谁取到 ...

  4. 一起啃PRML - 1.2 Probability Theory 概率论

    一起啃PRML - 1.2 Probability Theory @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ A key concept in t ...

  5. 一起啃PRML - 1.1 Example: Polynomial Curve Fitting 多项式曲线拟合

    一起啃PRML - 1.1 Example: Polynomial Curve Fitting @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ 前言: ...

  6. 一起啃PRML - 1 Introduction 绪论

    一起啃PRML - 1 Introduction @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ 这一部分主要是介绍一下Pattern Recogni ...

  7. 一起啃PRML - Preface 前言

    一起啃PRML - 前言 Preface @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ PRML,Pattern Recognition and M ...

  8. PRML读书会第十二章 Continuous Latent Variables(PCA,Principal Component Analysis,PPCA,核PCA,Autoencoder,非线性流形)

    主讲人 戴玮 (新浪微博: @戴玮_CASIA) Wilbur_中博(1954123) 20:00:49 我今天讲PRML的第十二章,连续隐变量.既然有连续隐变量,一定也有离散隐变量,那么离散隐变量是 ...

  9. PRML读书笔记——Introduction

    1.1. Example: Polynomial Curve Fitting 1. Movitate a number of concepts: (1) linear models: Function ...

随机推荐

  1. UIAlertController基本使用

      从ios8之后,系统的弹框 UIAlertView 与 UIActionSheet 两个并在一了起, 使用了一个新的控制器叫 UIAlertController UIAlertController ...

  2. Runtime 在IOS中的详细使用

    因为之前写东西的时候,都在未知笔记中,所有大家没有看到过我的文章,今天就开始使用博客园来进行和大家沟通.好了,废话不那么多了,转入正题.下面我把runtime 给大家介绍一下. ### 一.runti ...

  3. html中可以使用在块级元素<body>中的元素

    1.<p></p>当在html页面中需要显示大段文字的时候,可以使用p元素标记每一个段落的边界,需要注意的是,段落是块级元素,只允许包含文本和行内元素. 以下标注的是p中的标准 ...

  4. Java Lambda简明教程(一)

    Lambda表达式背景 许多热门的编程语言如今都有一个叫做lambda或者闭包的语言特性,包括比较经典的函数式编程语言Lisp,Scheme,也有稍微年轻的语言比如JavaScript,Python, ...

  5. ubuntn svn 安装 配置

    参考文章  http://zhan.renren.com/itbegin?gid=3602888498033631485&checked=true 上面的文章说得很详细 sudo apt-ge ...

  6. samba和squid 安装

    一. samba配置1. 什么是sambaSamba服务类似于windows上的共享功能,可以实现在Linux上共享文件,windows上访问,当然在Linux上也可以访问到.是一种在局域网上共享文件 ...

  7. linux运维工程师,必须掌握以下几个工具

    本人是linux运维工程师,对这方面有点心得,现在我说说要掌握哪方面的工具吧说到工具,在行外可以说是技能,在行内我们一般称为工具,就是运维必须要掌握的工具.我就大概列出这几方面,这样入门就基本没问题了 ...

  8. Javascript数组的indexOf()、lastIndexOf()方法

    在javascript数组中提供了两个方法来对数组进行查找,这两个方法分别为indexOf(),lastIndexOf(). 这两个方法都有两个参数,第一个参数为需要查找的项,第二个参数则是查找的起始 ...

  9. php操作memcache的用法、详解和方法介绍

    1.简介 memcache模块是一个高效的守护进程,提供用于内存缓存的过程式程序和面向对象的方便的接口,特别是对于设计动态web程序时减少对数据库的访问. memcache也提供用于通信对话(sess ...

  10. 阿里云主机建立SWAP分区脚本

    工具:add_swap.sh    所有执行的脚本都需要root身份来执行,执行方法:以root身执行命令:bash xxx.sh 功能:自动检测系统swap分区大小,交换分区大小不合理则自动新增并挂 ...