偷懒用的线性规划。

 #include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxr=;
const int maxc=; int n,m,nxt[maxc];
int a[maxr][maxc]; void Pivot(int l,int e){
int pre=maxc-;
for(int i=;i<=n;i++)
if(a[l][i]!=){nxt[pre]=i;pre=i;}
nxt[pre]=-; for(int i=,t;i<=m;i++)
if(i!=l&&(t=a[i][e])){
a[i][e]=;
for(int j=nxt[maxc-];j!=-;j=nxt[j])
a[i][j]+=t*a[l][j];
}
} void Simplex(){
while(true){
int e=,l=;
for(int i=;i<=n;i++)
if(a[][i]>){e=i;break;}
if(e==)break;
for(int i=;i<=m;i++)
if(a[i][e]<&&(!l||a[l][]>a[i][]))
{l=i;} Pivot(l,e);
}
} int main(){
#ifndef ONLINE_JUDGE
freopen("zjoi13_defend.in","r",stdin);
freopen("zjoi13_defend.out","w",stdout);
#endif
scanf("%d%d",&m,&n);
for(int i=;i<=m;i++)
scanf("%d",&a[i][]);
for(int i=,l,r,t;i<=n;i++){
scanf("%d%d%d",&l,&r,&t);
for(int j=l;j<=r;j++)
a[j][i]=-;
a[][i]=t;
}
Simplex();
printf("%d\n",a[][]);
return ;
}

数学(线性规划): ZJOI2013 防守战线的更多相关文章

  1. 【BZOJ3112】[Zjoi2013]防守战线 单纯形法

    [BZOJ3112][Zjoi2013]防守战线 题解:依旧是转化成对偶问题,然后敲板子就行了~ 建完表后发现跟志愿者招募的表正好是相反的,感觉很神奇~ #include <cstdio> ...

  2. BZOJ 3112 [Zjoi2013]防守战线 线性规划

    题意: 简单叙述: 一个长度为n的序列,在每一个点建塔的费用为Ci.有m个区间.每一个区间内至少有Dj个塔.求最小花费. 方法:线性规划 解析: 与上一题相似.相同使用对偶原理解题.解法不再赘述. 代 ...

  3. BZOJ 3112: [Zjoi2013]防守战线 [单纯形法]

    题目描述 战线可以看作一个长度为n 的序列,现在需要在这个序列上建塔来防守敌兵,在序列第i 号位置上建一座塔有Ci 的花费,且一个位置可以建任意多的塔,费用累加计算.有m 个区间[L1, R1], [ ...

  4. ZJOI2013 防守战线

    题目 战线可以看作一个长度为\(n\)的序列,现在需要在这个序列上建塔来防守敌兵,在序列第\(i\)号位置上建一座塔有\(C_i\)的花费,且一个位置可以建任意多的塔,费用累加计算.有\(m\)个区间 ...

  5. bzoj3112 [Zjoi2013]防守战线

    正解:线性规划. 直接套单纯形的板子,因为所约束条件都是>=号,且目标函数为最小值,所以考虑对偶转换,转置一下原矩阵就好了. //It is made by wfj_2048~ #include ...

  6. bzoj3550: [ONTAK2010]Vacation&&bzoj3112: [Zjoi2013]防守战线

    学了下单纯形法解线性规划 看起来好像并不是特别难,第二个code有注释.我还有...*=-....这个不是特别懂 第一个是正常的,第二个是解对偶问题的 #include<cstdio> # ...

  7. BZOJ 3112 Zjoi2013 防守战线 单纯形

    题目大意: 单纯形*2.. . #include <cmath> #include <cstdio> #include <cstring> #include < ...

  8. BZOJ3112 [Zjoi2013]防守战线 【单纯形】

    题目链接 BZOJ3112 题解 同志愿者招募 费用流神题 单纯形裸题 \(BZOJ\)可过 洛谷被卡.. #include<algorithm> #include<iostream ...

  9. 单纯形 BZOJ3112: [Zjoi2013]防守战线

    题面自己上网查. 学了一下单纯形.当然 证明什么的 显然是没去学.不然估计就要残废了 上学期已经了解了 什么叫标准型. 听起来高大上 其实没什么 就是加入好多松弛变量+各种*(-1),使得最后成为一般 ...

随机推荐

  1. HTML - 键盘事件

    Keyboard 事件 onkeydown: 在用户按下按键时触发. onkeypress: 在用户敲击按钮时触发. onkeyup: 当用户释放按键时触发. 示例 <!DOCTYPE html ...

  2. RegistryKey 类

    表示 Windows 注册表中的项级节点. 此类是注册表封装. 继承层次结构 System.Object   System.MarshalByRefObject    Microsoft.Win32. ...

  3. PreferenceFragment界面透明问题

    PreferenceFragment界面默认是透明的 而其布局代码框架为 <PreferenceScreen> ... </PreferenceScreen>,背景色及透明度属 ...

  4. 使用ng-if,获取不到里面的ng-model值,解决方案

    当使用ng-if时,是会把默认作用域删除的,当其为true时,只是增加了其界面元素,为最原始状态,控制器在其上是不起作用的,要想获取ng-if中的值,可以用$scope.$$childTail.lay ...

  5. 【转】iOS-Core-Animation-Advanced-Techniques(四)

    原文:http://www.cocoachina.com/ios/20150105/10812.html 隐式动画和显式动画 隐式动画 按照我的意思去做,而不是我说的. -- 埃德娜,辛普森 我们在第 ...

  6. JavaScript学习笔记之原型对象

    本文是学习<JavaScript高级程序设计>第六章的笔记. JS中,便于批量创建对象的三种模式: 1.工厂模式:用一个函数封装创建对象的细节,传入必要的参数,在函数内部new一个对象并返 ...

  7. cocos2d-x学习之类型转换(转)

    在做数据转换时,最好包含以下头文件 #include <iostream> #include <cmath> #include <string> #include  ...

  8. (一)Nodejs - 框架类库 - Nodejs异步流程控制Async

    简介 Async是一个流程控制工具包,提供了直接而强大的异步功能 应用场景 业务流程逻辑复杂,适应异步编程,减少回调的嵌套 安装 npm insatll async 函数介绍 Collections ...

  9. SpringMVC4+thymeleaf3的一个简单实例(篇三:页面参数获取)

    本篇将通过示例介绍页面参数是如何传递到后台的.我们继续沿用之前搭好的程序结构,如果你不知道,请参照前两篇.为方便跳转页面,我们在首页以及zoolist.html页面都加上彼此地址的链接:首页: zoo ...

  10. 平衡搜索树(一) AVL树

    AVL树 AVL树又称为高度平衡的二叉搜索树,是1962年有俄罗斯的数学家G.M.Adel'son-Vel'skii和E.M.Landis提出来的.它能保持二叉树的高度 平衡,尽量降低二叉树的高度,减 ...