数据结构:队列 链表,顺序表和循环顺序表实现(python版)
链表实现队列:
尾部 添加数据,效率为0(1)
头部 元素的删除和查看,效率也为0(1)
顺序表实现队列:
头部 添加数据,效率为0(n)
尾部 元素的删除和查看,效率也为0(1)
循环顺序表实现队列:
尾部 添加数据,效率为0(1)
头部 元素的删除和查看,效率也为0(1)
#!/usr/bin/env python
# -*- coding:utf-8 -*- class QueueUnderflow(ValueError):
pass #链表节点
class Node(object):
def __init__(self, elem, next_ = None):
self.elem = elem
self.next = next_ #链表实现队列,头部删除和查看O(1),尾部加入O(1)
class LQueue(object):
def __init__(self):
self._head = None
self._rear = None def is_empty(self):
return self._head is None #查看队列中最早进入的元素,不删除
def peek(self):
if self.is_empty():
raise QueueUnderflow
return self._head.elem #将元素elem加入队列,入队
def enqueue(self, elem):
p = Node(elem)
if self.is_empty():
self._head = p
self._rear = p
else:
self._rear.next = p
self._rear =p #删除队列中最早进入的元素并将其返回,出队
def dequeue(self):
if self.is_empty():
raise QueueUnderflow
result = self._head.elem
self._head = self._head.next
return result #顺序表实现队列,头部删除和查看O(1),尾部加入O(n)
class Simple_SQueue(object):
def __init__(self, init_len = 8):
self._len = init_len
self._elems = [None] * init_len
self._num = 0 def is_empty(self):
return self._num == 0 def is_full(self):
return self._num == self._len def peek(self):
if self._num == 0:
raise QueueUnderflow
return self._elems[self._num-1] def dequeue(self):
if self._num == 0:
raise QueueUnderflow
result = self._elems[self._num-1]
self._num -= 1
return result def enqueue(self,elem):
if self.is_full():
self.__extand()
for i in range(self._num,0,-1):
self._elems[i] = self._elems[i-1]
self._elems[0] = elem
self._num += 1 def __extand(self):
old_len = self._len
self._len *= 2
new_elems = [None] * self._len
for i in range(old_len):
new_elems[i] = self._elems[i]
self._elems = new_elems #循环顺序表实现队列,头部删除和查看O(1),尾部加入O(1)
class SQueue(object):
def __init__(self, init_num = 8):
self._len = init_num
self._elems = [None] * init_num
self._head = 0
self._num = 0 def is_empty(self):
return self._num == 0 def peek(self):
if self.is_empty():
raise QueueUnderflow
return self._elems[self._head] def dequeue(self):
if self.is_empty():
raise QueueUnderflow
result = self._elems[self._head]
self._head = (self._head + 1) % self._len
self._num -= 1
return result def enqueue(self, elem):
if self._num == self._len:
self.__extand()
self._elems[(self._head + self._num) % self._len] = elem
self._num += 1 def __extand(self):
old_len = self._len
self._len *= 2
new_elems = [None] * self._len
for i in range(old_len):
new_elems[i] = self._elems[(self._head + i) % old_len]
self._elems, self._head = new_elems, 0 if __name__=="__main__":
q = SQueue()
for i in range(8):
q.enqueue(i)
#for i in range(8):
# print(q.dequeue())
#print(q._num)
q.enqueue(8)
print(q._len)
数据结构:队列 链表,顺序表和循环顺序表实现(python版)的更多相关文章
- 3、顺序表、内存、类型、python中的list
1.内存.类型本质.连续存储 1.内存本质 2.C 语言实例-计算 int, float, double 和 char 字节大小 使用 sizeof 操作符计算int, float, double 和 ...
- PHP数据结构之二 线性表中的顺序表的PHP实现
线性表 (一)基本特点:最基本.最简单.最常用的一种数据结构 在这种结构中: 1.存在一个唯一的被称为“第一个”的数据元素: 2.存在一个唯一的被称为“最后一个”的数据元素: 3.除第一个元素外,每个 ...
- 顺序表的基本方法实现C语言版
顺序表--------------线性表的第一个儿子 这个儿子的结构体定义: typedef int ElemType;//取别名 typedef struct link{ ElemType * he ...
- [Python] 数据结构--实现顺序表、链表、栈和队列
说明: 本文主要展示Python实现的几种常用数据结构:顺序表.链表.栈和队列. 附有实现代码. 来源主要参考网络文章. 一.顺序表 1.顺序表的结构 一个顺序表的完整信息包括两部分,一部分是表中元素 ...
- 数据结构Java实现02----线性表与顺序表
[声明] 欢迎转载,但请保留文章原始出处→_→ 生命壹号:http://www.cnblogs.com/smyhvae/ 文章来源:http://www.cnblogs.com/smyhvae/p/4 ...
- 数据结构Java实现01----线性表与顺序表
一.线性结构: 如果一个数据元素序列满足: (1)除第一个和最后一个数据元素外,每个数据元素只有一个前驱数据元素和一个后继数据元素: (2)第一个数据元素没有前驱数据元素: (3)最后一个数据元素没有 ...
- 【数据结构 Python & C++】顺序表
用C++ 和 Python实现顺序表的简单操作 C++代码 // Date:2019.7.31 // Author:Yushow Jue #include<iostream> using ...
- Java数据结构——顺序表
一个线性表是由n(n≥0)个数据元素所构成的有限序列. 线性表逻辑地表示为:(a0,a1,…,an-1).其中,n为线性表的长度,n=0时为空表.i为ai在线性表中的位序号. 存储结构:1.顺序存储, ...
- 数据结构——Java实现顺序表
一.分析 什么是顺序表?顺序表是指用一组地址连续的存储单元依次存储各个元素,使得在逻辑结构上相邻的数据元素存储在相邻的物理存储单元中的线性表.一个标准的顺序表需要实现以下基本操作: 1.初始化顺序表 ...
随机推荐
- [原] KVM 虚拟化原理探究(5)— 网络IO虚拟化
KVM 虚拟化原理探究(5)- 网络IO虚拟化 标签(空格分隔): KVM IO 虚拟化简介 前面的文章介绍了KVM的启动过程,CPU虚拟化,内存虚拟化原理.作为一个完整的风诺依曼计算机系统,必然有输 ...
- JavaScript基础知识总结(三)
JavaScript语法 七.循环语句 1.while 语法: while (exp) { //statements; } 说明:while (变量<=结束值) { 需执行的代码 } 例子: / ...
- UVA, 10336 Rank the Languages
难点在于:递归函数和输出: #include <iostream> #include <vector> #include <algorithm> #include ...
- Windos环境用Nginx配置反向代理和负载均衡
Windos环境用Nginx配置反向代理和负载均衡 引言:在前后端分离架构下,难免会遇到跨域问题.目前的解决方案大致有JSONP,反向代理,CORS这三种方式.JSONP兼容性良好,最大的缺点是只支持 ...
- AutoMapper(五)
返回总目录 Dynamic和ExpandoObject映射 AutoMapper不用任何配置就可以从dynamic(动态)对象映射或映射到dynamic对象. namespace FifthAutoM ...
- ABP框架理论研究总结(典藏版)
目前,我已经完成了Module-Zero的翻译,请查看我的<Module-Zero学习目录>. 到现在为止,使用ABP框架开发正式项目已经3个月有余了,期间翻阅了大量文档资料,包括ABP官 ...
- 【腾讯Bugly干货分享】React Native项目实战总结
本文来自于腾讯bugly开发者社区,非经作者同意,请勿转载,原文地址:http://dev.qq.com/topic/577e16a7640ad7b4682c64a7 “8小时内拼工作,8小时外拼成长 ...
- BIO\NIO\AIO记录
IO操作可以分为3类:同步阻塞(BIO).同步非阻塞(NIO).异步(AIO). 同步阻塞(BIO):在此种方式下,用户线程发起一个IO操作以后,必须等待IO操作的完成,只有当真正完成了IO操作以后, ...
- iOS开发系列--通知与消息机制
概述 在多数移动应用中任何时候都只能有一个应用程序处于活跃状态,如果其他应用此刻发生了一些用户感兴趣的那么通过通知机制就可以告诉用户此时发生的事情.iOS中通知机制又叫消息机制,其包括两类:一类是本地 ...
- 关于VS2015支持编译Linux程序的问题
现状 目前已经发布的VS2015中包括VS2015 Preview 以及 VS2015 CTP6,这两个版本均不支持直接编译C++代码为Linux程序,具体情况可以参考 Visual Studio 2 ...