Bloom Filter是由Bloom在1970年提出的一种多哈希函数映射的快速查找算法。通常应用在一些需要快速判断某个元素是否属于集合,但是并不严格要求100%正确的场合。
一. 实例

为了说明Bloom Filter存在的重要意义,举一个实例:

假设要你写一个网络蜘蛛(web crawler)。由于网络间的链接错综复杂,蜘蛛在网络间爬行很可能会形成“环”。为了避免形成“环”,就需要知道蜘蛛已经访问过那些URL。给一个URL,怎样知道蜘蛛是否已经访问过呢?稍微想想,就会有如下几种方案:

1. 将访问过的URL保存到数据库。

2. 用HashSet将访问过的URL保存起来。那只需接近O(1)的代价就可以查到一个URL是否被访问过了。

3. URL经过MD5或SHA-1等单向哈希后再保存到HashSet或数据库。

4. Bit-Map方法。建立一个BitSet,将每个URL经过一个哈希函数映射到某一位。

方法1~3都是将访问过的URL完整保存,方法4则只标记URL的一个映射位。

以上方法在数据量较小的情况下都能完美解决问题,但是当数据量变得非常庞大时问题就来了。

方法1的缺点:数据量变得非常庞大后关系型数据库查询的效率会变得很低。而且每来一个URL就启动一次数据库查询是不是太小题大做了?

方法2的缺点:太消耗内存。随着URL的增多,占用的内存会越来越多。就算只有1亿个URL,每个URL只算50个字符,就需要5GB内存。

方法3:由于字符串经过MD5处理后的信息摘要长度只有128Bit,SHA-1处理后也只有160Bit,因此方法3比方法2节省了好几倍的内存。

方法4消耗内存是相对较少的,但缺点是单一哈希函数发生冲突的概率太高。还记得数据结构课上学过的Hash表冲突的各种解决方法么?若要降低冲突发生的概率到1%,就要将BitSet的长度设置为URL个数的100倍。

二. Bloom Filter的算法

   废话说到这里,下面引入本篇的主角--Bloom Filter。其实上面方法4的思想已经很接近Bloom Filter了。方法四的致命缺点是冲突概率高,为了降低冲突的概念,Bloom Filter使用了多个哈希函数,而不是一个。

   Bloom Filter算法如下:

   创建一个m位BitSet,先将所有位初始化为0,然后选择k个不同的哈希函数。第i个哈希函数对字符串str哈希的结果记为h(i,str),且h(i,str)的范围是0到m-1 。

(1) 加入字符串过程

下面是每个字符串处理的过程,首先是将字符串str“记录”到BitSet中的过程:

对于字符串str,分别计算h(1,str),h(2,str)…… h(k,str)。然后将BitSet的第h(1,str)、h(2,str)…… h(k,str)位设为1。

图1.Bloom Filter加入字符串过程

很简单吧?这样就将字符串str映射到BitSet中的k个二进制位了。

(2) 检查字符串是否存在的过程

下面是检查字符串str是否被BitSet记录过的过程:

对于字符串str,分别计算h(1,str),h(2,str)…… h(k,str)。然后检查BitSet的第h(1,str)、h(2,str)…… h(k,str)位是否为1,若其中任何一位不为1则可以判定str一定没有被记录过。若全部位都是1,则“认为”字符串str存在。

若一个字符串对应的Bit不全为1,则可以肯定该字符串一定没有被Bloom Filter记录过。(这是显然的,因为字符串被记录过,其对应的二进制位肯定全部被设为1了)

但是若一个字符串对应的Bit全为1,实际上是不能100%的肯定该字符串被Bloom Filter记录过的。(因为有可能该字符串的所有位都刚好是被其他字符串所对应)这种将该字符串划分错的情况,称为false positive 。

(3) 删除字符串过程

   字符串加入了就被不能删除了,因为删除会影响到其他字符串。实在需要删除字符串的可以使用Counting bloomfilter(CBF),这是一种基本Bloom Filter的变体,CBF将基本Bloom Filter每一个Bit改为一个计数器,这样就可以实现删除字符串的功能了。

Bloom Filter跟单哈希函数Bit-Map不同之处在于:Bloom Filter使用了k个哈希函数,每个字符串跟k个bit对应。从而降低了冲突的概率。

三. Bloom Filter参数选择

   (1)哈希函数选择

   哈希函数的选择对性能的影响应该是很大的,一个好的哈希函数要能近似等概率的将字符串映射到各个Bit。选择k个不同的哈希函数比较麻烦,一种简单的方法是选择一个哈希函数,然后送入k个不同的参数。

   (2)Bit数组大小选择

   哈希函数个数k、位数组大小m、加入的字符串数量n的关系可以参考参考文献1 <
http://pages.cs.wisc.edu/~cao/papers/summary-cache/node8.html>。该文献证明了对于给定的m、n,当 k = ln(2)* m/n 时出错的概率是最小的。

   同时该文献还给出特定的k,m,n的出错概率。例如:根据参考文献1,哈希函数个数k取10,位数组大小m设为字符串个数n的20倍时,false positive发生的概率是0.0000889 ,这个概率基本能满足网络爬虫的需求了。 

四. Bloom Filter实现代码

下面给出一个简单的Bloom Filter的Java实现代码:

import java.util.BitSet;
public class BloomFilter
{
/* BitSet初始分配2^24个bit */
private static final int DEFAULT_SIZE = 1 << 25;
/* 不同哈希函数的种子,一般应取质数 */
private static final int[] seeds = new int[] { 5, 7, 11, 13, 31, 37, 61 };
private BitSet bits = new BitSet(DEFAULT_SIZE);
/* 哈希函数对象 */
private SimpleHash[] func = new SimpleHash[seeds.length];
public BloomFilter()
{
for (int i = 0; i < seeds.length; i++)
{
func[i] = new SimpleHash(DEFAULT_SIZE, seeds[i]);
}
}
// 将字符串标记到bits中
public void add(String value)
{
for (SimpleHash f : func)
{
bits.set(f.hash(value), true);
}
}
//判断字符串是否已经被bits标记
public boolean contains(String value)
{
if (value == null)
{
return false;
}
boolean ret = true;
for (SimpleHash f : func)
{
ret = ret && bits.get(f.hash(value));
}
return ret;
}
/* 哈希函数类 */
public static class SimpleHash
{
private int cap;
private int seed;
public SimpleHash(int cap, int seed)
{
this.cap = cap;
this.seed = seed;
}
//hash函数,采用简单的加权和hash
public int hash(String value)
{
int result = 0;
int len = value.length();
for (int i = 0; i < len; i++)
{
result = seed * result + value.charAt(i);
}
return (cap - 1) & result;
}
}
}

BloomFilter--大规模数据处理利器的更多相关文章

  1. BloomFilter–大规模数据处理利器(转)

    BloomFilter–大规模数据处理利器 Bloom Filter是由Bloom在1970年提出的一种多哈希函数映射的快速查找算法.通常应用在一些需要快速判断某个元素是否属于集合,但是并不严格要求1 ...

  2. BloomFilter–大规模数据处理利器

    转自: http://www.dbafree.net/?p=36 BloomFilter–大规模数据处理利器 Bloom Filter是由Bloom在1970年提出的一种多哈希函数映射的快速查找算法. ...

  3. BloomFilter ——大规模数据处理利器

    BloomFilter——大规模数据处理利器 Bloom Filter是由Bloom在1970年提出的一种多哈希函数映射的快速查找算法.通常应用在一些需要快速判断某个元素是否属于集合,但是并不严格要求 ...

  4. [转]BloomFilter——大规模数据处理利器

    Bloom Filter是由Bloom在1970年提出的一种多哈希函数映射的快速查找算法.通常应用在一些需要快速判断某个元素是否属于集合,但是并不严格要求100%正确的场合. 一. 实例 为了说明Bl ...

  5. BloomFilter——大规模数据处理利器

    Bloom Filter是由Bloom在1970年提出的一种多哈希函数映射的快速查找算法.通常应用在一些需要快速判断某个元素是否属于集合,但是并不严格要求100%正确的场合. 一.实例 为了说明Blo ...

  6. BloomFilter——大规模数据处理利器(爬虫判重)

    http://www.cnblogs.com/heaad/archive/2011/01/02/1924195.html Bloom Filter是由Bloom在1970年提出的一种多哈希函数映射的快 ...

  7. BloomFilter——大规模数据处理利器[转]

    原文链接:原文 Bloom Filter是由Bloom在1970年提出的一种多哈希函数映射的快速查找算法.通常应用在一些需要快速判断某个元素是否属于集合,但是并不严格要求100%正确的场合. 一. 实 ...

  8. 微软开源大规模数据处理项目 Data Accelerator

    微软开源了一个原为内部使用的大规模数据处理项目 Data Accelerator.自 2017 年开发以来,该项目已经大规模应用在各种微软产品工作管道上. 据微软官方开源博客介绍,Data Accel ...

  9. arcpy模块下的并行计算与大规模数据处理

    一个多星期的时间,忍着胃痛一直在做GIS 540: Spatial Programming的课程项目,导致其他方面均毫无进展,可惜可惜.在这个过程当中临时抱佛脚学习了很多Python相关的其他内容,并 ...

  10. 大规模数据处理Apache Spark开发

    大规模数据处理Apache Spark开发 Spark是用于大规模数据处理的统一分析引擎.它提供了Scala.Java.Python和R的高级api,以及一个支持用于数据分析的通用计算图的优化引擎.它 ...

随机推荐

  1. [CSS]overflow内容溢出

      定义和用法 overflow 属性规定当内容溢出元素框时发生的事情. 说明 这个属性定义溢出元素内容区的内容会如何处理.如果值为 scroll,不论是否需要,用户代理都会提供一种滚动机制.因此,有 ...

  2. ubuntu 14.04 安装preforce

    官网: http://www.perforce.com/ http://www.perforce.com/support-services 1. 下载相关文件 http://filehost.perf ...

  3. Python 手册——参数传递以及交互模式

    我们先来看参数传递. 调用解释器时,脚本名和附加参数之传入一个名为sys.argv的字符串列表.没有脚本和参数时,它至少也有一个 元素:sys.argv[0]此时为空字符串.脚本名指定为‘ - ’(表 ...

  4. linux系统下,递归删除.svn文件

    linux系统下,递归删除.svn文件 SVNLinux 进入要删除的目录,执行下面的命令就可以啦. find . -name "*.svn"  | xargs rm -rf

  5. Codeforces Round #315 (Div. 2)

    这次可以说是最糟糕的一次比赛了吧, 心没有静下来好好的去思考, 导致没有做好能做的题. Problem_A: 题意: 你要听一首时长为T秒的歌曲, 你点击播放时会立刻下载好S秒, 当你听到没有加载到的 ...

  6. ruby定时脚本

    ruby定时脚本的实现涉及到三个方面: 要定时执行的代码 定时控制(设置定时的时间) 将脚本后台化 实例: # in func.rb def func # the function body goes ...

  7. Matlab聚类分析[转]

    Matlab聚类分析[转] Matlab提供系列函数用于聚类分析,归纳起来具体方法有如下: 方法一:直接聚类,利用clusterdata函数对样本数据进行一次聚类,其缺点为可供用户选择的面较窄,不能更 ...

  8. xcode 环境,多工程联编设置【转】

    http://blog.csdn.net/vienna_zj/article/details/8467522 一.xcode4中的环境变量 $(BUILT_PRODUCTS_DIR) build成功后 ...

  9. 【POJ2773】Happy 2006 欧几里德

    题目描述: 分析: 根据欧几里德,我们有gcd(b×t+a,b)=gcd(a,b) 则如果a与b互质,则b×t+a与b也一定互质,如果a与b不互质,则b×t+a与b也一定不互质. 所以与m互质的数对m ...

  10. Volley框架支持HTTPS请求。

    第一次写帖子,嘿嘿. 最近了解到google2013IO大会出了个网络框架,正好项目也需要用到,就看了下. 最后发现接口都是HTTPS的,但是Volley默认是不支持HTTPS,网上找了好久,都没有对 ...