HDOJ 1018 Big Number(大数位数公式)
Problem Description
In many applications very large integers numbers are required. Some of these applications are using keys for secure transmission of data, encryption, etc. In this problem you are given a number, you have to determine the number of digits in the factorial of the number.
Input
Input consists of several lines of integer numbers. The first line contains an integer n, which is the number of cases to be tested, followed by n lines, one integer 1 ≤ n ≤ 107 on each line.
Output
The output contains the number of digits in the factorial of the integers appearing in the input.
Sample Input
2
10
20
Sample Output
7
19
这题要求n的阶乘的位数,如果n较大时,n的阶乘必将是一个很大的数,题中说1<=n<10000000,当n=10000000时可以说n的阶乘将是一个非常巨大的数字,对于处理大数的问题,我们一般用字符串,这题当n取最大值时,就是一千万个数字相乘的积,太大了,就算保存在字符串中都有一点困难,而且一千万个数字相乘是会涉及到大数的乘法,大数的乘法是比较耗时的,就算计算出结果一般也会超时。这让我们不得不抛弃这种直接的方法。
再想一下,这题是要求n的阶乘的位数,而n的阶乘是n个数的乘积,那么要是我们能把这个问题分解就好了。
在这之前,我们必须要知道一个知识,任意一个正整数a的位数等于(int)log10(a)+ 1;为什么呢?下面给大家推导一下:
对于任意一个给定的正整数a,
假设10^(x-1)<=a<10^x,那么显然a的位数为x位,
又因为
log10(10^(x-1))<=log10(a)<(log10(10^x))
即x-1<=log10(a) < x
则(int)log10(a)=x-1,
即(int)log10(a)+1=x
即a的位数是(int)log10(a)+1
我们知道了一个正整数a的位数等于(int)log10(a) + 1,现在来求n的阶乘的位数:
假设A=n!=1*2*3*……*n,那么我们要求的就是(int)log10(A)+1,
而:
log10(A)=log10(1*2*3*……n)
(根据log10(a*b) = log10(a) +log10(b)有) =log10(1)+log10(2)+log10(3)+……+log10(n)
现在我们终于找到方法,问题解决了,我们将求n的阶乘的位数分解成了求n个数对10取对数的和,并且对于其中任意一个数,都在正常的数字范围之类。
总结一下:n的阶乘的位数等于
(int)(log10(1)+log10(2)+log10(3)+……+log10(n)) + 1
开始我是打算用java大数做的,可是超时。
上面的思路是参考网络上其他人的。
import java.math.BigDecimal;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
//超时
// Scanner sc = new Scanner(System.in);
//
// int t = sc.nextInt();
// while(t-->0){
// int n = sc.nextInt();
//
// BigDecimal a = new BigDecimal(1);
//
// for(int i=n;i>0;i--){
// a = a.multiply(new BigDecimal(i));
// }
//
// String str = a.toPlainString();
// System.out.println(str.length());
//
//
// }
Scanner sc= new Scanner(System.in);
int t = sc.nextInt();
while(t-->0){
int n = sc.nextInt();
double sum = 0;
for(int i = 1;i<=n;i++){
sum = sum+Math.log10(i);
}
System.out.println((1+(int)(sum)));
}
}
}
HDOJ 1018 Big Number(大数位数公式)的更多相关文章
- 水题 HDOJ 4727 The Number Off of FFF
题目传送门 /* 水题:判断前后的差值是否为1,b[i]记录差值,若没有找到,则是第一个出错 */ #include <cstdio> #include <iostream> ...
- 51nod 1058 N的阶乘的长度 位数公式
1058 N的阶乘的长度基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注输入N求N的阶乘的10进制表示的长度.例如6! = 720,长度为3.Input输入N( ...
- 如何运用同余定理求余数【hdoj 1212 Big Number【大数求余数】】
Big Number Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total ...
- HDU 1018 Big Number (log函数求数的位数)
Problem Description In many applications very large integers numbers are required. Some of these app ...
- HDU 1018 Big Number (阶乘位数)
题意: 给一个数n,返回该数的阶乘结果是一个多少位(十进制位)的整数. 思路: 用对数log来实现. 举个例子 一个三位数n 满足102 <= n < 103: 那么它的位数w 满足 w ...
- 【HDOJ】1018 Big Number
数学题,还是使用log避免大数,但是不要忘记需要+1,因为0也是1位,log(100)= 2,但却是3位. #include <stdio.h> #include <math.h&g ...
- HDU 1018 Big Number(数论,Stirling公式)
1. 利用数学公式lg(n!)=lg(2)+lg(3)+....+lg(n) 求解 2.
- ASC(22)H(大数+推公式)
High Speed Trains Time Limit: 4000/2000MS (Java/Others)Memory Limit: 128000/64000KB (Java/Others) Su ...
- HDU 1018 Big Number【斯特林公式/log10 / N!】
Big Number Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total ...
随机推荐
- Android进阶笔记02:Android 网络请求库的比较及实战(二)
一.Volley 既然在android2.2之后不建议使用HttpClient,那么有没有一个库是android2.2及以下版本使用HttpClient,而android2.3及以上版本 ...
- Audio Capture 录音
The Android multimedia framework includes support for capturing and encoding a variety of common aud ...
- centos 安装nginx
centos 安装nginx 安装依赖 更换源 yum install http://mirrors.163.com/centos/6.8/extras/x86_64/Packages/epel-re ...
- Linux SSH: key, agent, keychain
以前遇到过一个问题,在用有些 Linux 发行版时,用 ssh-keygen 产生好了密钥对并上传到了目标服务器,但每次登录都要重新输入. 这与 ssh-agent 有关,看如下 man ssh-ag ...
- ASPNET5 管理应用程序的状态
1. 应用程序状态选项 在ASP.NET5当中,全局的Application对象没有了,转而被In Memory Caching所代替,ASPNET5当中有下多种管理状态的方式: HttpContex ...
- Spring和CXF整合时报Unsupported major.minor version 51.0异常
好吧,官网上有写:The current plan is that CXF 3.1 will no longer support Java 6 and will require Java 7 or n ...
- Css简介
- Ajax简单应用-购物车
1. 2. 3. 4. 5. 6.
- jquery $.each遍历json数组方法
<!doctype html public "-//w3c//dtd xhtml 1.0 transitional//en" "http://www.w3.org/ ...
- 【COGS1672】难存的情缘
[题目描述] 一天机房的夜晚,无数人在MC里奋斗着... 大家都知道矿产对于MC来说是多么的重要,但由于矿越挖越少,勇士们不得不跑到更远的地方挖矿,但这样路途上就会花费相当大的时间,导致挖矿效率底下. ...