SGD 讲解,梯度下降的做法,随机性。理解反向传播
SGD 讲解,梯度下降的做法,随机性。理解反向传播
待办
Stochastic Gradient Descent 随机梯度下降没有用Random这个词,因为它不是完全的随机,而是服从一定的分布的,只是具有随机性在里面。其中的Stochastic的意思是从x到y的映射: x→yx\to y x→y
给定一个xxx并不能确定地知道输出yyy,而是服从一定的概率分布。
与之对应的是Deterministic这个词,它表示从xxx到yyy的映射是确定的: y=f(x)y=f(x) y=f(x)
具体地,SGD是从训练集中随机选出一个比较小的batch(16/32/64/128…甚至可能只有一个样本)出来,在这个小的样本集上用梯度的均值做梯度下降更新参数。而传统的梯度下降则是每次都要考虑在整个训练集上所有样本的梯度。
使用SGD的原因是训练集样本可能非常多,一方面显存不够把所有样本读进来,另一方面对所有样本计算梯度速度可能太慢了。所以在实际用的时候都不用原始的GD,而是用SGD来做的:
from torch import optim
......
optimizer = optim.SGD(net.parameters(), lr=learning_rate, momentum=0.78)
1
————————————————
版权声明:本文为CSDN博主「刘知昊」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/SHU15121856/article/details/88875149k
SGD 讲解,梯度下降的做法,随机性。理解反向传播的更多相关文章
- 100天搞定机器学习|day37 无公式理解反向传播算法之精髓
100天搞定机器学习(Day1-34) 100天搞定机器学习|Day35 深度学习之神经网络的结构 100天搞定机器学习|Day36 深度学习之梯度下降算法 本篇为100天搞定机器学习之第37天,亦 ...
- [LNU.Machine Learning.Question.1]梯度下降方法的一些理解
曾经学习machine learning,在regression这一节,对求解最优化问题的梯度下降方法,理解总是处于字面意义上的生吞活剥. 对梯度的概念感觉费解?到底是标量还是矢量?为什么沿着负梯度方 ...
- 如何理解反向传播 Backpropagation 梯度下降算法要点
http://colah.github.io/posts/2015-08-Backprop/ http://www.zhihu.com/question/27239198 待翻译 http://blo ...
- 深度学习笔记之【随机梯度下降(SGD)】
随机梯度下降 几乎所有的深度学习算法都用到了一个非常重要的算法:随机梯度下降(stochastic gradient descent,SGD) 随机梯度下降是梯度下降算法的一个扩展 机器学习中一个反复 ...
- Pytorch_第七篇_深度学习 (DeepLearning) 基础 [3]---梯度下降
深度学习 (DeepLearning) 基础 [3]---梯度下降法 Introduce 在上一篇"深度学习 (DeepLearning) 基础 [2]---神经网络常用的损失函数" ...
- [AI]神经网络章2 神经网络中反向传播与梯度下降的基本概念
反向传播和梯度下降这两个词,第一眼看上去似懂非懂,不明觉厉.这两个概念是整个神经网络中的重要组成部分,是和误差函数/损失函数的概念分不开的. 神经网络训练的最基本的思想就是:先“蒙”一个结果,我们叫预 ...
- BGD(批量梯度下降)--学习笔记
函数凸凹性: 用到的范数知识: 详细解释:每一个元素的平方再开方.补充损失函数: Huber Loss知识点 loss函数可以通过loss参数进行设置.SGDRegressor支持以下的loss函数: ...
- 实现属于自己的TensorFlow(二) - 梯度计算与反向传播
前言 上一篇中介绍了计算图以及前向传播的实现,本文中将主要介绍对于模型优化非常重要的反向传播算法以及反向传播算法中梯度计算的实现.因为在计算梯度的时候需要涉及到矩阵梯度的计算,本文针对几种常用操作的梯 ...
- DL反向传播理解
作者:寒小阳 时间:2015年12月. 出处:http://blog.csdn.net/han_xiaoyang/article/details/50321873 声明:版权所有,转载请联系作者并注明 ...
随机推荐
- centos tomcat解压版安装
解压: tar -xzvf apache-tomcat-8.5.23.tar.gz -C /usr/local/java 配置Tomcat的环境变量: export CATALINA_HOME=/us ...
- ftp下载目录文件 不需要ftp脚本
ftp下载目录文件 不需要ftp脚本 wget ftp://192.168.1.37:21/checkpoints --ftp-user=ftpadmin --ftp-password=gaofeng ...
- Navicat Premium15安装与激活(破解)
Navicat premium是一款数据库管理工具,是一个可多重连线资料库的管理工具,它可以让你以单一程式同时连线到 MySQL.SQLite.Oracle 及 PostgreSQL 资料库,让管理不 ...
- javascript 权威指南1
JavaScript是面向web的编程语言 web(World Wide Web)即全球广域网,也称为万维网,它是一种基于超文本和HTTP的.全球性的.动态交互的.跨平台的分布式图形信息系统.是建立在 ...
- Miller_Rabin()算法素数判定 +ollard_rho 算法进行质因数分解
//****************************************************************// Miller_Rabin 算法进行素数测试//速度快,而且可以 ...
- gulp常用插件之gulp-filter使用
更多gulp常用插件使用请访问:gulp常用插件汇总 gulp-filter这是一款可以把stream里的文件根据一定的规则进行筛选过滤. 更多使用文档请点击访问gulp-filter工具官网. 安装 ...
- JavaDay9(下)
Java learning_Day9(下) 本人学习视频用的是马士兵的,也在这里献上 <链接:https://pan.baidu.com/s/1qKNGJNh0GgvlJnitTJGqgA> ...
- 安装Ansible到CentOS(YUM)
运行环境 系统版本:CentOS Linux release 7.3.1611 (Core) 软件版本:ansible 硬件要求:无 安装过程 1.安装YUM-EPEL源 HTTP-Tools软件包由 ...
- H5_0019:JS中定义json结构
"7HKm": function(e, a, d) { "use strict"; Object ...
- vue 脚手架使用路由
概念: 后端路由: 后端处理URL和页面之间的映射关系 前端发展阶段: 1.后端渲染阶段(以jsp,php为代表,其特点为html代码和后端语言代码混写在一起 2.前后端分离阶段(随着ajax的兴起, ...