@hdu - 5960@ Subsequence
@description@
给定如下计算序列权值的函数:
对于一个由三元组 (cost0, cost1, color) 组成的序列 A,求通过以上函数计算出来的第 k 大的子序列的权值。
Input
第一行一个整数 t,表示数据组数。
对于每组数据,第一行包含两个整数 n, k。
接下来 n 行,每行三个整数 cost0, cost1, color (0 <= cost0, cost1<= 10000;0 <=color <=1),第 i 行描述 A 的第 i 个三元组。
保证至少有 k 个非空子序列。单组数据中 n <= 50000。∑n <= 400000,∑k <= 400000。
Output
对于每一行,输出对应的答案。
Sample Input
1
3 4
2 1 0
1 3 1
3 1 1
Sample Output
3
Hint
@solution@
大多数的 k 大问题都可以对应转化成 k 短路的模型,只是有些只能用 k 短路的思想来做而不能直接写裸 k 短路。
k 短路怎么做呢?在技术不发达的时代可以用 A* 玄学搜索,但现在发达了,于是我们有了效率更高的做法。
假如我们要求 s 到 t 的 k 短路,我们可以先求出在反向图中以 t 为根的最短路树(即每个点到 t 的最短路径构成的树)。
于是这样,s 到 t 的每一条路径将会经过一些树边与非树边。我们不妨用路径经过的非树边序列表示这样一条路径。
接下来,我们用优先队列存储当前的非树边序列。每一次选出最小的序列并进行拓展。
对于一个非树边序列,每一次拓展,要么在序列最末加入一条非树边,要么替换掉序列最后的非树边。
那么拓展 k 次后就可以得到我们的 k 短路。
最短路肯定就是 s 到 t 的纯树边道路(即非树边序列为空),我们将其加入初始优先队列。
怎么实现呢?我们先对于每条非树边 u -> v : w 算出 -dis[u] + w + dis[v],即选择这条非树边会增加的代价,记为它的权值。
然后用可持久化可并堆,得到 x 到 t 的树边路径上所有点连出去的非树边构成的堆。
于是在最末加入一条新的非树边就很好操作了:取出最末非树边 (u, v) 的 v 对应的那个堆的堆顶。
那么怎么进行替换呢?我们在每个优先队列的结点中再存储一个可持久化可并堆,表示可用决策。
每次进行替换时,将可并堆的堆顶删除得到新的可用决策。
OK。我们来看这道题怎么转成 k 短路。
其实很简单,我们建 2*(n+2) 个点,第 i 对点表示 cur = 0 与 cur = 1 两种状态。
其中第 0 对(中 cur = 0 的那个点)表示源点,第 n + 1 对表示汇点。
然后对应在 i-1 与 i 之间连一连就好啦。
@accepted code@
#include<queue>
#include<vector>
#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
#define fi first
#define se second
#define mp make_pair
#define rep(G, x) for(Graph::edge *p = G.adj[x];p;p = p->nxt)
typedef pair<int, int> pii;
typedef long long ll;
const int MAXN = 50000;
struct Heap{
struct node{
node *ch[2];
int dis, key, num;
}pl[100*MAXN + 5], *ncnt, *NIL;
Heap() {
NIL = &pl[0];
NIL->ch[0] = NIL->ch[1] = NIL;
NIL->key = NIL->dis = 0;
}
node *newnode(int k, int p) {
ncnt++;
ncnt->ch[0] = ncnt->ch[1] = NIL;
ncnt->key = k, ncnt->num = p, ncnt->dis = 1;
return ncnt;
}
node *newnode(node *x) {
ncnt++; *ncnt = *x;
return ncnt;
}
void pushup(node *x) {
if( x->ch[1]->dis > x->ch[0]->dis )
swap(x->ch[0], x->ch[1]);
x->dis = x->ch[1]->dis + 1;
}
node *merge(node *x, node *y) {
if( x == NIL ) return y;
if( y == NIL ) return x;
if( x->key < y->key ) swap(x, y);
node *p = newnode(x);
p->ch[1] = merge(x->ch[1], y);
pushup(p); return p;
}
void clear() {ncnt = &pl[0];}
node *insert(node *x, int k, int p) {return merge(x, newnode(k, p));}
node *erase(node *x) {return merge(x->ch[0], x->ch[1]);}
}T;
struct node{
int x, k, dis; Heap::node *rt;
node(int _x=0, int _k=0, int _d=0, Heap::node *_rt=T.NIL):x(_x), k(_k), dis(_d), rt(_rt) {}
friend bool operator < (const node a, const node b) {
return a.dis < b.dis;
}
};
struct Graph{
struct edge{
int to, dis, id;
edge *nxt;
}edges[4*MAXN + 5], *adj[2*MAXN + 5], *ecnt;
void addedge(int u, int v, int w, int id) {
edge *p = (++ecnt);
p->to = v, p->dis = w, p->id = id;
p->nxt = adj[u], adj[u] = p;
}
void clear(int n) {
for(int i=1;i<=n;i++) adj[i] = NULL;
ecnt = &edges[0];
}
}G1, G2;
int ecnt;
void addedge(int u, int v, int w) {
ecnt++, G1.addedge(u, v, w, ecnt), G2.addedge(v, u, w, ecnt);
}
Heap::node *rt[2*MAXN + 5];
int pre[2*MAXN + 5], dis[2*MAXN + 5], ind[2*MAXN + 5];
void topo(int s, int t) {
for(int i=s;i<=t;i++)
rep(G2, i) ind[p->to]++;
queue<int>que;
for(int i=s;i<=t;i++) {
if( ind[i] == 0 ) que.push(i);
pre[i] = dis[i] = -1;
}
dis[t] = 0, rt[t] = T.NIL;
while( !que.empty() ) {
int f = que.front(); que.pop();
rep(G2, f) {
int t = p->to, id = p->id;
if( dis[f] + p->dis > dis[t] ) {
dis[t] = dis[f] + p->dis;
pre[t] = id;
}
ind[t]--;
if( ind[t] == 0 ) {
rt[t] = T.NIL;
rep(G1, t) {
if( p->id == pre[t] )
rt[t] = T.merge(rt[t], rt[p->to]);
else rt[t] = T.insert(rt[t], dis[p->to] - dis[t] + p->dis, p->to);
}
que.push(t);
}
}
}
}
int get_kth(int s, int t, int k) {
topo(s, t);
priority_queue<node>que;
que.push(node(s, dis[s], dis[s], T.NIL));
for(int i=1;i<=k;i++) {
node t = que.top(); que.pop();
if( i == k ) return t.dis;
if( t.rt != T.NIL )
que.push(node(t.rt->num, t.k, t.k + t.rt->key, T.erase(t.rt)));
if( rt[t.x] != T.NIL )
que.push(node(rt[t.x]->num, t.dis, t.dis + rt[t.x]->key, T.erase(rt[t.x])));
}
return -1;
}
int cost[2][MAXN + 5], clr[MAXN + 5], id[2][MAXN + 5];
void solve() {
T.clear(); int n, k, cnt = 0;
scanf("%d%d", &n, &k);
for(int i=0;i<=n;i++)
id[0][i] = (++cnt), id[1][i] = (++cnt);
int s = id[0][0], t = ++cnt;
G1.clear(t), G2.clear(t), ecnt = 0;
for(int i=1;i<=n;i++) {
scanf("%d%d%d", &cost[0][i], &cost[1][i], &clr[i]);
for(int j=0;j<2;j++)
addedge(id[j][i-1], id[j][i], 0), addedge(id[j][i-1], id[clr[i]][i], cost[j][i]);
}
addedge(id[0][n], t, 0), addedge(id[1][n], t, 0);
printf("%d\n", get_kth(s, t, k));
}
int main() {
int T; scanf("%d", &T);
while( T-- ) solve();
}
@details@
我一开始写的是带标记的可持久化堆(也就是没有建图跑 k 短路这么简单粗暴的方法):维护两个堆 A, B 分别表示 cur = 0 与 cur = 1 的情况,每次要么往 A, B 中插入元素,要么 A, B 同时加上一个权值。
然后就被卡空间了。可喜可贺,可喜可贺。
@hdu - 5960@ Subsequence的更多相关文章
- hdu 3530 Subsequence
题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=3530 Subsequence Description There is a sequence of i ...
- HDU 3530 Subsequence(单调队列)
传送门 Description There is a sequence of integers. Your task is to find the longest subsequence that s ...
- 2017中国大学生程序设计竞赛 - 网络选拔赛 HDU 6155 Subsequence Count 矩阵快速幂
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6155 题意: 题解来自:http://www.cnblogs.com/iRedBean/p/73982 ...
- HDU Palindrome subsequence(区间DP)
Palindrome subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/65535 K (Java/Oth ...
- 【单调队列+尺取】HDU 3530 Subsequence
acm.hdu.edu.cn/showproblem.php?pid=3530 [题意] 给定一个长度为n的序列,问这个序列满足最大值和最小值的差在[m,k]的范围内的最长子区间是多长? [思路] 对 ...
- HDU 6155 Subsequence Count 线段树维护矩阵
Subsequence Count Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 256000/256000 K (Java/Oth ...
- HDU 6155 Subsequence Count (DP、线性代数、线段树)
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=6155 题解 DP+线代好题.(考场上过多时间刚前两题,没怎么想这题--) 首先列出一个DP式: 设\( ...
- HDU - 3530 Subsequence (单调队列)
Subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total ...
- hdu 3530 Subsequence 单调队列
题目链接 题目给出n个数, 一个下界m, 一个上界k, 让你求出最长的一段序列, 满足这段序列中的最大的数-最小的数<=k&&>=m, 输出这段长度. 可以维护两个队列, ...
随机推荐
- HTML5中的数据集dataset和自定义属性data-*
在html5中可为所有元素添加一种自定义的属性,这种属性的前缀以data-开头,比如:data-name,目的是为元素提供与页面渲染无关,但与dom元素强相关的属性.添加完自定义属性后我们可以通过元素 ...
- 前端(jQuery)(6)-- jQuery的扩展与noConflict
1.jQuery的扩展 <!DOCTYPE html> <html lang="en"> <head> <meta charset=&qu ...
- php5 常量
<?php define("GREETING", "Welcome to w3cschool.cn!", true); echo greeting; ?& ...
- 使用Jedis操作Redis-使用Java语言在客户端操作---对key的操作
//添加String类型的模拟数据. jedis.set("mykey", "2"); jedis.set("mykey2", " ...
- web前端学习(四)JavaScript学习笔记部分(1)-- JavaScript基础教程
1.JavaScript基础教程 1.1.Javascript基础-介绍.实现.输出 1.1.1.JavaScript是互联网上最流行的脚本语言,这门语言可用于web和HTML,更可广泛用于服务端.p ...
- 解决pycharm新建工程项目都需要重新安装库问题
在新建一个工程项目后,发现之前安装的库均不在了.想要使用的情况下还得重新安装.这样也太不智能了,一定会有解决的办法.查找相关文档后,发现在新建工程项目的时候需要进行选择是否使用以前的环境. 选择已存在 ...
- Django 点滴
1.views 中可用 render 传递参数 def home(request): info_dict = {'site': u'震撼学习', 'content': u'各种IT技术'} #Tuto ...
- ASP.NET自定义控件组件开发 第一章 第三篇 第一章的完结篇
ASP.NET自定义控件组件开发 第一章 第三篇 第三篇:第一章的完结篇 系列文章链接: ASP.NET自定义控件组件开发 第一章 待续 ASP.NET自定义控件组件开发 第一章 第二篇 接着待续 ...
- Python要如何实现(列表)排序?
排序,是许多编程语言中经常出现的问题.同样的,在Python中,如何是实现排序呢?(以下排序都是基于列表来实现) 一.使用Python内置函数进行排序 Python中拥有内置函数实现排序,可以直接调用 ...
- iOS GCD 使用
1. dispatch queue的概念 dispatch queue分成以下三种: a)运行在主线程的Main queue,通过dispatch_get_main_queue获取.dispatch_ ...