前言

前情回顾

上一讲看了Eureka 注册中心的自我保护机制,以及里面提到的bug问题。

哈哈 转眼间都2020年了,这个系列的文章从12.17 一直写到现在,也是不容易哈,每天持续不断学习,输出博客,这一段时间确实收获很多。

今天在公司给组内成员分享了Eureka源码剖析,反响效果还可以,也算是感觉收获了点东西。后面还会继续feign、ribbon、hystrix的源码学习,依然文章连载的形式输出。

本讲目录

本讲主要是EurekaServer集群模式的数据同步讲解,主要目录如下。

目录如下:

  1. eureka server集群机制
  2. 注册、下线、续约的注册表同步机制
  3. 注册表同步三层队列机制详解

技术亮点:

  1. 3层队列机制实现注册表的批量同步需求

说明

原创不易,如若转载 请标明来源!

博客地址:一枝花算不算浪漫

微信公众号:壹枝花算不算浪漫

源码分析

eureka server集群机制

Eureka Server会在注册、下线、续约的时候进行数据同步,将信息同步到其他Eureka Server节点。

可以想象到的是,这里肯定不会是实时同步的,往后继续看注册表的同步机制吧。

注册、下线、续约的注册表同步机制

我们以Eureka Client注册为例,看看Eureka Server是如何同步给其他节点的。

PeerAwareInstanceRegistryImpl.java :

public void register(final InstanceInfo info, final boolean isReplication) {
int leaseDuration = Lease.DEFAULT_DURATION_IN_SECS;
if (info.getLeaseInfo() != null && info.getLeaseInfo().getDurationInSecs() > 0) {
leaseDuration = info.getLeaseInfo().getDurationInSecs();
}
super.register(info, leaseDuration, isReplication);
replicateToPeers(Action.Register, info.getAppName(), info.getId(), info, null, isReplication);
} private void replicateToPeers(Action action, String appName, String id,
InstanceInfo info /* optional */,
InstanceStatus newStatus /* optional */, boolean isReplication) {
Stopwatch tracer = action.getTimer().start();
try {
if (isReplication) {
numberOfReplicationsLastMin.increment();
}
// If it is a replication already, do not replicate again as this will create a poison replication
if (peerEurekaNodes == Collections.EMPTY_LIST || isReplication) {
return;
} for (final PeerEurekaNode node : peerEurekaNodes.getPeerEurekaNodes()) {
// If the url represents this host, do not replicate to yourself.
if (peerEurekaNodes.isThisMyUrl(node.getServiceUrl())) {
continue;
}
replicateInstanceActionsToPeers(action, appName, id, info, newStatus, node);
}
} finally {
tracer.stop();
}
} private void replicateInstanceActionsToPeers(Action action, String appName,
String id, InstanceInfo info, InstanceStatus newStatus,
PeerEurekaNode node) {
try {
InstanceInfo infoFromRegistry = null;
CurrentRequestVersion.set(Version.V2);
switch (action) {
case Cancel:
node.cancel(appName, id);
break;
case Heartbeat:
InstanceStatus overriddenStatus = overriddenInstanceStatusMap.get(id);
infoFromRegistry = getInstanceByAppAndId(appName, id, false);
node.heartbeat(appName, id, infoFromRegistry, overriddenStatus, false);
break;
case Register:
node.register(info);
break;
case StatusUpdate:
infoFromRegistry = getInstanceByAppAndId(appName, id, false);
node.statusUpdate(appName, id, newStatus, infoFromRegistry);
break;
case DeleteStatusOverride:
infoFromRegistry = getInstanceByAppAndId(appName, id, false);
node.deleteStatusOverride(appName, id, infoFromRegistry);
break;
}
} catch (Throwable t) {
logger.error("Cannot replicate information to {} for action {}", node.getServiceUrl(), action.name(), t);
}
}
  1. 注册完成后,调用replicateToPeers(),注意这里面有一个参数isReplication,如果是true,代表是其他Eureka Server节点同步的,false则是EurekaClient注册来的。
  2. replicateToPeers()中一段逻辑,如果isReplication为true则直接跳出,这里意思是client注册来的服务实例需要向其他节点扩散,如果不是则不需要去同步
  3. peerEurekaNodes.getPeerEurekaNodes()拿到所有的Eureka Server节点,循环遍历去同步数据,调用replicateInstanceActionsToPeers()
  4. replicateInstanceActionsToPeers()方法中根据注册、下线、续约等去处理不同逻辑

接下来就是真正执行同步逻辑的地方,这里主要用了三层队列对同步请求进行了batch操作,将请求打成一批批 然后向各个EurekaServer进行http请求。

注册表同步三层队列机制详解

到了这里就是真正进入了同步的逻辑,这里还是以上面注册逻辑为主线,接着上述代码继续往下跟:

PeerEurekaNode.java :

public void register(final InstanceInfo info) throws Exception {
long expiryTime = System.currentTimeMillis() + getLeaseRenewalOf(info);
batchingDispatcher.process(
taskId("register", info),
new InstanceReplicationTask(targetHost, Action.Register, info, null, true) {
public EurekaHttpResponse<Void> execute() {
return replicationClient.register(info);
}
},
expiryTime
);
}

这里会执行batchingDispatcher.process() 方法,我们继续点进去,然后会进入 TaskDispatchers.createBatchingTaskDispatcher() 方法,查看其中的匿名内部类中的process()方法:

void process(ID id, T task, long expiryTime) {
// 将请求都放入到acceptorQueue中
acceptorQueue.add(new TaskHolder<ID, T>(id, task, expiryTime));
acceptedTasks++;
}

将需要同步的Task数据放入到acceptorQueue队列中。

接着回到createBatchingTaskDispatcher()方法中,看下AcceptorExecutor,它的构造函数中会启动一个后台线程:

ThreadGroup threadGroup = new ThreadGroup("eurekaTaskExecutors");

this.acceptorThread = new Thread(threadGroup, new AcceptorRunner(), "TaskAcceptor-" + id);

我们继续跟AcceptorRunner.java:

class AcceptorRunner implements Runnable {
@Override
public void run() {
long scheduleTime = 0;
while (!isShutdown.get()) {
try {
// 处理acceptorQueue队列中的数据
drainInputQueues(); int totalItems = processingOrder.size(); long now = System.currentTimeMillis();
if (scheduleTime < now) {
scheduleTime = now + trafficShaper.transmissionDelay();
}
if (scheduleTime <= now) {
// 将processingOrder拆分成一个个batch,然后进行操作
assignBatchWork();
assignSingleItemWork();
} // If no worker is requesting data or there is a delay injected by the traffic shaper,
// sleep for some time to avoid tight loop.
if (totalItems == processingOrder.size()) {
Thread.sleep(10);
}
} catch (InterruptedException ex) {
// Ignore
} catch (Throwable e) {
// Safe-guard, so we never exit this loop in an uncontrolled way.
logger.warn("Discovery AcceptorThread error", e);
}
}
} private void drainInputQueues() throws InterruptedException {
do {
drainAcceptorQueue(); if (!isShutdown.get()) {
// If all queues are empty, block for a while on the acceptor queue
if (reprocessQueue.isEmpty() && acceptorQueue.isEmpty() && pendingTasks.isEmpty()) {
TaskHolder<ID, T> taskHolder = acceptorQueue.poll(10, TimeUnit.MILLISECONDS);
if (taskHolder != null) {
appendTaskHolder(taskHolder);
}
}
}
} while (!reprocessQueue.isEmpty() || !acceptorQueue.isEmpty() || pendingTasks.isEmpty());
} private void drainAcceptorQueue() {
while (!acceptorQueue.isEmpty()) {
// 将acceptor队列中的数据放入到processingOrder队列中去,方便后续拆分成batch
appendTaskHolder(acceptorQueue.poll());
}
} private void appendTaskHolder(TaskHolder<ID, T> taskHolder) {
if (isFull()) {
pendingTasks.remove(processingOrder.poll());
queueOverflows++;
}
TaskHolder<ID, T> previousTask = pendingTasks.put(taskHolder.getId(), taskHolder);
if (previousTask == null) {
processingOrder.add(taskHolder.getId());
} else {
overriddenTasks++;
}
} }

认真跟这里面的代码,可以看到这里是将上面的acceptorQueue放入到processingOrder, 其中processingOrder也是一个队列。

AcceptorRunner.javarun()方法中,还会调用assignBatchWork()方法,这里面就是将processingOrder打成一个个batch,接着看代码:

void assignBatchWork() {
if (hasEnoughTasksForNextBatch()) {
if (batchWorkRequests.tryAcquire(1)) {
long now = System.currentTimeMillis();
int len = Math.min(maxBatchingSize, processingOrder.size());
List<TaskHolder<ID, T>> holders = new ArrayList<>(len);
while (holders.size() < len && !processingOrder.isEmpty()) {
ID id = processingOrder.poll();
TaskHolder<ID, T> holder = pendingTasks.remove(id);
if (holder.getExpiryTime() > now) {
holders.add(holder);
} else {
expiredTasks++;
}
}
if (holders.isEmpty()) {
batchWorkRequests.release();
} else {
batchSizeMetric.record(holders.size(), TimeUnit.MILLISECONDS);
// 将批量数据放入到batchWorkQueue中
batchWorkQueue.add(holders);
}
}
}
} private boolean hasEnoughTasksForNextBatch() {
if (processingOrder.isEmpty()) {
return false;
}
// 默认maxBufferSize为250
if (pendingTasks.size() >= maxBufferSize) {
return true;
} TaskHolder<ID, T> nextHolder = pendingTasks.get(processingOrder.peek());
// 默认maxBatchingDelay为500ms
long delay = System.currentTimeMillis() - nextHolder.getSubmitTimestamp();
return delay >= maxBatchingDelay;
}

这里加入batch的规则是:maxBufferSize 默认为250

maxBatchingDelay 默认为500ms,打成一个个batch后就开始发送给server端。至于怎么发送 我们接着看 PeerEurekaNode.java, 我们在最开始调用register() 方法就是调用PeerEurekaNode.register(), 我们来看看它的构造方法:

PeerEurekaNode(PeerAwareInstanceRegistry registry, String targetHost, String serviceUrl,
HttpReplicationClient replicationClient, EurekaServerConfig config,
int batchSize, long maxBatchingDelayMs,
long retrySleepTimeMs, long serverUnavailableSleepTimeMs) {
this.registry = registry;
this.targetHost = targetHost;
this.replicationClient = replicationClient; this.serviceUrl = serviceUrl;
this.config = config;
this.maxProcessingDelayMs = config.getMaxTimeForReplication(); String batcherName = getBatcherName();
ReplicationTaskProcessor taskProcessor = new ReplicationTaskProcessor(targetHost, replicationClient);
this.batchingDispatcher = TaskDispatchers.createBatchingTaskDispatcher(
batcherName,
config.getMaxElementsInPeerReplicationPool(),
batchSize,
config.getMaxThreadsForPeerReplication(),
maxBatchingDelayMs,
serverUnavailableSleepTimeMs,
retrySleepTimeMs,
taskProcessor
);
}

这里会实例化一个ReplicationTaskProcessor.java, 我们跟进去,发下它是实现TaskProcessor的,所以一定会执行此类中的process()方法,执行方法如下:

public ProcessingResult process(List<ReplicationTask> tasks) {
ReplicationList list = createReplicationListOf(tasks);
try {
EurekaHttpResponse<ReplicationListResponse> response = replicationClient.submitBatchUpdates(list);
int statusCode = response.getStatusCode();
if (!isSuccess(statusCode)) {
if (statusCode == 503) {
logger.warn("Server busy (503) HTTP status code received from the peer {}; rescheduling tasks after delay", peerId);
return ProcessingResult.Congestion;
} else {
// Unexpected error returned from the server. This should ideally never happen.
logger.error("Batch update failure with HTTP status code {}; discarding {} replication tasks", statusCode, tasks.size());
return ProcessingResult.PermanentError;
}
} else {
handleBatchResponse(tasks, response.getEntity().getResponseList());
}
} catch (Throwable e) {
if (isNetworkConnectException(e)) {
logNetworkErrorSample(null, e);
return ProcessingResult.TransientError;
} else {
logger.error("Not re-trying this exception because it does not seem to be a network exception", e);
return ProcessingResult.PermanentError;
}
}
return ProcessingResult.Success;
}

这里面是将List<ReplicationTask> tasks 通过submitBatchUpdate() 发送给server端。

server端在PeerReplicationResource.batchReplication()去处理,实际上就是循环调用ApplicationResource.addInstance() 方法,又回到了最开始注册的方法。

到此 EurekaServer同步的逻辑就结束了,这里主要是三层队列的数据结构很绕,通过一个batchList去批量同步数据的。

注意这里还有一个很重要的点,就是Client注册时调用addInstance()方法,这里到了server端PeerAwareInstanceRegistryImpl会执行同步其他EurekaServer逻辑。

而EurekaServer同步注册接口仍然会调用addInstance()方法,这里难不成就死循环调用了?当然不是,addInstance()中也有个参数:isReplication, 在最后调用server端方法的时候如下:registry.register(info, "true".equals(isReplication));

我们知道,EurekaClient在注册的时候isReplication传递为空,所以这里为false,而Server端同步的时候调用:

PeerReplicationResource:

private static Builder handleRegister(ReplicationInstance instanceInfo, ApplicationResource applicationResource) {
applicationResource.addInstance(instanceInfo.getInstanceInfo(), REPLICATION);
return new Builder().setStatusCode(Status.OK.getStatusCode());
}

这里的REPLICATION 为true

另外在AbstractJersey2EurekaHttpClient中发送register请求的时候,有个addExtraHeaders()方法,如下图:

如果是使用的Jersey2ReplicationClient发送的,那么header中的x-netflix-discovery-replication配置则为true,在后面执行注册的addInstance()方法中会接收这个参数的:

总结

仍然一图流,文中解析的内容都包含在这张图中了:

申明

本文章首发自本人博客:https://www.cnblogs.com/wang-meng 和公众号:壹枝花算不算浪漫,如若转载请标明来源!

感兴趣的小伙伴可关注个人公众号:壹枝花算不算浪漫

【一起学源码-微服务】Nexflix Eureka 源码十二:EurekaServer集群模式源码分析的更多相关文章

  1. 微服务管理平台nacos虚拟ip负载均衡集群模式搭建

    一.Nacos简介 Nacos是用于微服务管理的平台,其核心功能是服务注册与发现.服务配置管理. Nacos作为服务注册发现组件,可以替换Spring Cloud应用中传统的服务注册于发现组件,如:E ...

  2. 【一起学源码-微服务】Eureka+Ribbon+Feign阶段性总结

    前言 想说的话 这里已经梳理完Eureka.Ribbon.Feign三大组件的基本原理了,今天做一个总结,里面会有一个比较详细的调用关系流程图. 说明 原创不易,如若转载 请标明来源! 博客地址:一枝 ...

  3. Spring Boot + Spring Cloud 构建微服务系统(六):熔断监控集群(Turbine)

    Spring Cloud Turbine 上一章我们集成了Hystrix Dashboard,使用Hystrix Dashboard可以看到单个应用内的服务信息,显然这是不够的,我们还需要一个工具能让 ...

  4. spring cloud微服务快速教程之(十二) 分布式ID解决方案(mybatis-plus篇)

    0-前言 分布式系统中,分布式ID是个必须解决的问题点: 雪花算法是个好方式,不过不能直接使用,因为如果直接使用的话,需要配置每个实例workerId和datacenterId,在微服务中,实例一般动 ...

  5. .Net Core微服务——Consul(4):主从、集群

    延续上一篇的话题继续,顺便放上一篇的传送门:点这里. 集群的必要性 consul本身就是管理集群的,现在还需要给consul搞个集群,这是为啥?因为consul单点也容易挂啊!万一管理集群的consu ...

  6. 【Azure微服务 Service Fabric 】如何转移Service Fabric集群中的种子节点(Seed Node)

    注意:在对Service Fabric的节点做操作之前,请务必确认是否是种子节点(Seed Node)且当前节点的数量是否与SF的持久层要求的数量一致. 可靠性级别是 Service Fabric 群 ...

  7. 【一起学源码-微服务】Nexflix Eureka 源码十三:Eureka源码解读完结撒花篇~!

    前言 想说的话 [一起学源码-微服务-Netflix Eureka]专栏到这里就已经全部结束了. 实话实说,从最开始Eureka Server和Eureka Client初始化的流程还是一脸闷逼,到现 ...

  8. 【一起学源码-微服务】Nexflix Eureka 源码十:服务下线及实例摘除,一个client下线到底多久才会被其他实例感知?

    前言 前情回顾 上一讲我们讲了 client端向server端发送心跳检查,也是默认每30钟发送一次,server端接收后会更新注册表的一个时间戳属性,然后一次心跳(续约)也就完成了. 本讲目录 这一 ...

  9. 【一起学源码-微服务】Nexflix Eureka 源码五:EurekaClient启动要经历哪些艰难险阻?

    前言 在源码分析三.四都有提及到EurekaClient启动的一些过程.因为EurekaServer在集群模式下 自己本身就是一个client,所以之前初始化eurekaServerContext就有 ...

随机推荐

  1. UVa-10986_Sending email (向前星+Dijkstra)

    题意:给你点.边,求起点到终点的最短距离. 题解:由于题目的数据量特别大,所以需要用邻接表来存边,之后对Dijkstra算法稍微魔改一下就可以了,本来以为会超时,做好了打堆优化的准备,结果卡时间过了, ...

  2. oracle函数greatest(exp1,exp2,exp3,……,expn)

    [功能]返回表达式列表中值最大的一个.如果表达式类型不同,会隐含转换为第一个表达式类型. [参数]exp1……n,各类型表达式 [返回]exp1类型 [示例] SELECT greatest(10,3 ...

  3. ASCII代码表

    >>ASCII代码表<<

  4. 认识web前端开发

    web前端开发 1.web即web系统,是以网站的形式呈现,通过浏览器的访问来实现一定的功能的系统. 2.什么是前端开发? 前端开发是创建web页面或app等前端界面呈现给用户的过程.通过html.c ...

  5. python 多线程,tthread模块比较底层,而threading模块是对thread做了一些包装,multithreading

    Python多线程详解 2016/05/10 · 基础知识 · 1 评论· 多线程 分享到:20 本文作者: 伯乐在线 - 王海波 .未经作者许可,禁止转载!欢迎加入伯乐在线 专栏作者. 1.多线程的 ...

  6. H3C 帧中继与水平分割(续)

  7. 反思K-S指标(KPMG大数据挖掘)

    评估信用评级模型,反思K-S指标 2015-12-05 KPMG大数据团队 KPMG大数据挖掘 “信用评级”的概念听起来可以十分直截了当.比如一天早上你接到电话,有个熟人跟你借钱,而你将在半睡半醒间迅 ...

  8. C# 16 进制字符串转 int

    最近在写硬件,发现有一些测试是做 16 进制的字符串,需要把他转换为整形才可以处理. 本文告诉大家如何从 16 进制转整形 如果输入的是 0xaa 这时转换 int 不能使用 Parse 不然会出现异 ...

  9. H5 存储数据sessionStorage

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  10. P1100 三连击

    题目描述 我们假设一个三位整数 \(N(100 \le N \le 999)\) ,它的百位上的数字是 \(A\) ,十位上的数字是 \(B\) ,个位上的数字是 \(C\) ,如果 \(A\) , ...