正解:搜索

解题报告:

传送门$QwQ$

首先发现长度为$len$的子集的值域为$[0,v\cdot len+len]$,数量为$2^{len}$.所以当$2^{len}\geq v\cdot len+len$时利用鸽巢原理发现显然是有解的.解得$len\geq 14$.

所以就只要解决$len<14$的范围内的问题了.

把转化后的题目拿出来,发现,噢这不是个折半搜索板子嘛.

复杂度也很对,$O(3^{\frac{len}{2}})$.

于是就做完了$QwQ$

嗷关于修改操作,只要每次记录下每个位置乘了多少次,然后在询问的时候如果$len<14$就$O(len)$地修改下,否则就不用管鸭$QwQ$

$over$

然后写完代码过来补点儿细节

好像也没啥,就这个修改操作我本来以为很$easy$后来发现是我想锅了$QAQ$

就修改会修改为$d^{3^k}$.所以这里有两种方法,一种是倍增一种是欧拉.因为欧拉比较好写所以我写的欧拉.就直接用扩展欧拉定理就完事$QwQ$.

但是说一个很迷惑的点,,,就我之前拿我的和倍增的方法拍了下,,,发现那个修改后的值不一样,,,但是都$AC$了,,,我也不知道咋回事$kk$

#pragma GCC optimize(2)
#include<bits/stdc++.h>
using namespace std;
#define il inline
#define lf double
#define gc getchar()
#define ri register int
#define rc register char
#define rb register bool
#define lowbit(x) (x&(-x))
#define rp(i,x,y) for(ri i=x;i<=y;++i)
#define my(i,x,y) for(ri i=x;i>=y;--i) const int N=100000+10;
int n,m,mod,a[N],tr[N],ph,lim;
bool flg;
unordered_map<int,int>mp; il int read()
{
rc ch=gc;ri x=0;rb y=1;
while(ch!='-' && (ch>'9' || ch<'0'))ch=gc;
if(ch=='-')ch=gc,y=0;
while(ch>='0' && ch<='9')x=(x<<1)+(x<<3)+(ch^'0'),ch=gc;
return y?x:-x;
}
il int phi(ri x)
{
ri ret=x;
for(ri i=2;i*i<=x;i++)if(!(x%i)){ret=ret/i*(i-1);while(!(x%i))x/=i;}
if(x>1)ret=ret/x*(x-1);;return ret;
}
il int power(ri x,ri y){ri ret=1;while(y){if(y&1)ret=1ll*ret*x%mod;x=1ll*x*x%mod;y>>=1;}return ret;}
il void ad(ri nw,ri dat){while(nw<=n)tr[nw]+=dat,nw+=lowbit(nw);}
il int query(ri nw){ri ret=0;while(nw)ret+=tr[nw],nw-=lowbit(nw);return ret;}
void dfs1(ri nw,ri lim,ri sum,ri zt)
{
if(nw>lim)
{
if(!zt)return;
if(zt==1){if(mp[sum]==2 || mp[sum]==4)mp[sum]=4;else mp[sum]|=zt;return;}
if(zt==2){if(mp[sum]==1 || mp[sum]==4)mp[sum]=4;else mp[sum]|=zt;return;}
mp[sum]=3;return;
}
dfs1(nw+1,lim,sum,zt);dfs1(nw+1,lim,sum+a[nw]+1,zt|1);dfs1(nw+1,lim,sum-a[nw]-1,zt|2);
}
void dfs2(ri nw,ri lim,ri sum,ri zt)
{
if(nw>lim)
{
if(zt==1 && mp[-sum]>1){flg=1;return;}
if(zt==2 && (mp[-sum]>2 || mp[-sum]==1)){flg=1;return;}
if(mp[-sum]==3 || (zt==3 && (mp[-sum] || !sum))){flg=1;return;}
return;
}
dfs2(nw+1,lim,sum,zt);if(flg)return;
dfs2(nw+1,lim,sum+a[nw]+1,zt|1);if(flg)return;
dfs2(nw+1,lim,sum-a[nw]-1,zt|2);
}
il int lg(ri x){ri ret=0;while(x>=3)++ret,x/=3;return ret;}
il int cal(ri d){ri tmp=0;if(d>lim)tmp=ph;swap(ph,mod);d=power(3,d);swap(ph,mod);return d+tmp;} int main()
{
n=read();m=read();mod=read();ph=phi(mod);lim=lg(ph);rp(i,1,n)a[i]=read();
while(m--)
{
ri opt=read(),l=read(),r=read();
if(opt==2)ad(l,1),ad(r+1,-1);
else
{
if(r-l+1>=14){printf("Yuno\n");continue;}if(l==r){printf("Yuki\n");continue;}
rp(i,l,r){ri d=query(i);ad(i,-d);ad(i+1,d);a[i]=power(a[i],cal(d));}
flg=0;mp.clear();
dfs1(l,(l+r)>>1,0,0);dfs2(((l+r)>>1)+1,r,0,0);if(flg)printf("Yuno\n");else printf("Yuki\n");
}
}
return 0;
}

随机推荐

  1. laravel setxxAttribute和getxxAttribute的使用

    setxxAttribute 在设置(sql: insert update) 的时候 会将$obj->xx = 'value'的时候, 操作数据库之前 自动转化一下 getxxAttribute ...

  2. js this详解

    This的定义: 它代表函数运行时,自动生成的一个内部对象,只能在函数内部使用. this的指向在函数定义的时候是确定不了的,只有函数执行的时候才能确定this到底指向谁,实际上this的最终指向的是 ...

  3. Knative 核心概念介绍:Build、Serving 和 Eventing 三大核心组件

    Knative 主要由 Build.Serving 和 Eventing 三大核心组件构成.Knative 正是依靠这三个核心组件,驱动着 Knative 这艘 Serverless 巨轮前行.下面让 ...

  4. 解决bootStrap selectpicker 下拉栏上方弹出

    最近项目中遇到了一个使用bootStrap selectpicker 进行下拉栏展示的时候出现在元素上方弹出展示的问题,可把我难受坏了,和测试互怼最终以失败告终(人家还是一个娇滴滴的小姑娘),在查了a ...

  5. poj 3743 LL’s cake (PSLG,Accepted)

    3743 -- LL’s cake 搞了好久都过不了,看了下题解是用PSLG来做的.POJ 2164 && LA 3218 Find the Border (Geometry, PSL ...

  6. idea乱码问题(全)

    中文乱码问题分类: 编码普通中文乱码 properties文件中文乱码 console控制台中文乱码 搜索框中文乱码 svn注释中文乱码 问题截图: 2.properties文件中文乱码 4,.搜索框 ...

  7. Android 自定义ProgressDialog

    Android本身已经提供了ProgressDialog进度等待框,使用该Dialog,我们可以为用户提供更好的体验:在网络请求时,弹出此框等待网络数据. 不过,既然是为了提高用户体验,我们肯定希望该 ...

  8. pip、conda 换国内源,大大提高下载速度

    https://www.jianshu.com/p/b2d53904dd37 源就是下载地址了,换到国内的源下载速度真的快了近10倍,这里都用了清华的源 pip 只要新建一个配置文件,写上路径就行了 ...

  9. hdu 1045 Fire Net(dfs)

    Fire Net Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Su ...

  10. H3C 帧中继基本配置命令