LibreOJ 6278. 数列分块入门 2 题解
题目链接:https://loj.ac/problem/6278
题目描述
给出一个长为 \(n\) 的数列,以及 \(n\) 个操作,操作涉及区间加法,询问区间内小于某个值 \(x\) 的元素个数。
输入格式
第一行输入一个数字 \(n\)。
第二行输入 \(n\) 个数字,第 \(i\) 个数字为 \(a_i\),以空格隔开。
接下来输入 \(n\) 行询问,每行输入四个数字 \(opt\)、\(l\)、\(r\)、\(c\),以空格隔开。
若 \(opt=0\),表示将位于 \([l,r]\) 的之间的数字都加 \(c\)。
若 \(opt=1\),表示询问 \([l,r]\) 中,小于 \(c^2\) 的数字的个数。
输出格式
对于每次询问,输出一行一个数字表示答案。
样例输入
4
1 2 2 3
0 1 3 1
1 1 3 2
1 1 4 1
1 2 3 2
样例输出
3
0
2
解题思路
同样还是按照每个块的大小为 \(\lfloor \sqrt{n} \rfloor\) 来进行分块。
这里我们同样用 \(p[i]\) 来表示 \(a[i]\) 所属的分块编号,用 \(v[k]\) 来表示第 \(k\) 个分块的累计更新值。
于此同时,我们再开一个数组 \(b[i]\) ,\(b\) 数组其实就是 \(a\) 数组的一个映射。那么它是怎么映射的呢?
我们假设 \(a[l..r]\) 属于同一个分块,且 \(a[l] 是这个分块的第一个元素,\)a[r$ 是这个分块的最后一个元素,那么 \(b[l..r]\) 就是 \(a[l..r]\) 排好序的结果,即:
- \(b[l]\) 对应 \(a[l..r]\) 中最小的元素;
- \(b[l+1]\) 对应 \(a[l..r]\) 中次小的元素;
- ……
- \(b[r]\) 对应 \(a[l..r]\) 中最大的元素。
一旦我们修改了某一个分块 \(k\) 中的部分元素,就需要将分块 \(k\) 对应的 \(b\) 数组的这段区间排序(对于分块 \(k\),它对应的坐标范围应该是 \([(k-1) \times m + 1, \min(k \times m, n)]\))。
修改操作:
- 如果区间没有完整覆盖分块 \(k\),则遍历次分块中的每一个元素,令 \(a[i]+=c\);
- 否则(完整覆盖分块 \(k\)),则令 \(v[k] += c\)。
查询操作:
- 如果区间没有完整覆盖分块 \(k\),则遍历次分块中的每一个元素,判断 \(a[i] \lt c^2-v[p[i]]\) 是否成立;
- 否则(完整覆盖分块 \(k\)),因为 \(b\) 数组具有单调性,对分块 \(k\) 包含的区间范围内的 \(b[l..r]\) 进行二分获取有多少元素 \(b[i] \lt c^2-v[k]\)。
最后将答案汇总。
每次修改的时间复杂度为 \(O( \sqrt{n} )\);
每次查询的时间复杂度为 \(O( \sqrt{n} \times \sqrt{ \sqrt{n} } ) = O(n^{ \frac 34 })\) ,
因为总共有有 \(n\) 次操作,所以整的时间复杂度为 \(O(n \times n^{ \frac 34 })\) 。
实现代码如下:
#include <bits/stdc++.h>
using namespace std;
const int maxn = 50050;
int n, m, a[maxn], b[maxn], p[maxn], v[300], op, l, r, c;
void update_part(int pid) {
int i1 = (pid-1)*m+1, i2 = min(pid*m+1, n+1); // 一定要注意边界条件,我在这里RE了好久,因为最后一个分块长度不一定是m
for (int i = i1; i < i2; i ++)
b[i] = a[i];
sort(b+i1, b+i2);
}
void add(int l, int r, int c) {
if (p[l] == p[r]) { // 说明在同一个分块,直接更新
for (int i = l; i <= r; i ++) a[i] += c;
update_part(p[l]);
return;
}
if (l % m != 1) { // 说明l不是分块p[l]的第一个元素
for (int i = l; p[i]==p[l]; i ++) {
a[i] += c;
}
update_part(p[l]);
}
else v[p[l]] += c;
if (r % m != 0) { // 说明r不是分块p[r]的最后一个元素
for (int i = r; p[i]==p[r]; i --)
a[i] += c;
update_part(p[r]);
}
else v[p[r]] += c;
for (int i = p[l]+1; i < p[r]; i ++)
v[i] += c;
}
int count_part(int pid, int c) {
int i1 = (pid-1)*m+1, i2 = min(pid*m+1, n+1);
int cnt = lower_bound(b+i1, b+i2, c*c-v[pid]) - (b+i1);
return cnt;
}
int get_count(int l, int r, int c) {
int cnt = 0;
if (p[l] == p[r]) { // 说明在同一个分块,直接更新
for (int i = l; i <= r; i ++)
if (a[i]+v[p[i]] < c*c)
cnt ++;
return cnt;
}
if (l % m != 1) { // 说明l不是分块p[l]的第一个元素
for (int i = l; p[i]==p[l]; i ++)
if (a[i]+v[p[i]] < c*c)
cnt ++;
}
else cnt += count_part(p[l], c);
if (r % m != 0) { // 说明r不是分块p[r]的最后一个元素
for (int i = r; p[i]==p[r]; i --)
if (a[i]+v[p[i]] < c*c)
cnt ++;
}
else cnt += count_part(p[r], c);
for (int i = p[l]+1; i < p[r]; i ++)
cnt += count_part(i, c);
return cnt;
}
int main() {
scanf("%d", &n);
m = sqrt(n);
for (int i = 1; i <= n; i ++) p[i] = (i-1)/m + 1;
for (int i = 1; i <= n; i ++) scanf("%d", &a[i]);
for (int i = m; i <= n; i += m) update_part(p[i]); // 初始化所有完整的块
for (int i = 0; i < n; i ++) {
scanf("%d%d%d%d", &op, &l, &r, &c);
if (op == 0) add(l, r, c);
else printf("%d\n", get_count(l, r, c));
}
return 0;
}
LibreOJ 6278. 数列分块入门 2 题解的更多相关文章
- LibreOJ 6277. 数列分块入门 1 题解
题目链接:https://loj.ac/problem/6277 题目描述 给出一个长为 \(n\) 的数列,以及 \(n\) 个操作,操作涉及区间加法,单点查值. 输入格式 第一行输入一个数字 \( ...
- LibreOJ 6278 数列分块入门 2(分块)
题解:非常高妙的分块,每个块对应一个桶,桶内元素全部sort过,加值时,对于零散块O(sqrt(n))暴力修改,然后暴力重构桶.对于大块直接整块加.查询时对于非完整块O(sqrt(n))暴力遍历.对 ...
- LOJ #6278. 数列分块入门 2-分块(区间加法、查询区间内小于某个值x的元素个数)
#6278. 数列分块入门 2 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 6 题目描述 给出 ...
- LibreOJ6279. 数列分块入门 3 题解
题目链接:https://loj.ac/problem/6279 题目描述 给出一个长为 \(n\) 的数列,以及 \(n\) 个操作,操作涉及区间加法,询问区间内小于某个值 \(x\) 的前驱(比其 ...
- #6278. 数列分块入门 2(询问区间内小于某个值 xx 的元素个数)
题目链接:https://loj.ac/problem/6278 题目大意:中文题目 具体思路:数列分块模板题,对于更新的时候,我们通过一个辅助数组来进行,对于原始的数组,我们只是用来加减,然后这个辅 ...
- LibreOJ 6277 数列分块入门 1(分块)
题解:感谢hzwer学长和loj让本蒟蒻能够找到如此合适的入门题做. 这是一道非常标准的分块模板题,本来用打标记的线段树不知道要写多少行,但是分块只有这么几行,极其高妙. 代码如下: #include ...
- LibreOJ 6277. 数列分块入门 2
题目链接:https://loj.ac/problem/6278 参考博客:https://blog.csdn.net/qq_36038511/article/details/79725027 这题我 ...
- LibreOJ 6282 数列分块入门 6(在线插入在线查询)
题解:还是分块,将每个块存入vector,然后在插入的时候就是sqrt(n)级的重构,如果块太大了,暴力将这个块拆开. 代码如下: #include<cmath> #include< ...
- LibreOJ 6280 数列分块入门 4(分块区间加区间求和)
题解:分块的区间求和比起线段树来说实在是太好写了(当然,复杂度也高)但这也是没办法的事情嘛.总之50000的数据跑了75ms左右还是挺优越的. 比起单点询问来说,区间询问和也没有复杂多少,多开一个su ...
随机推荐
- 一线实践 | 借助混沌工程工具 ChaosBlade 构建高可用的分布式系统
在分布式架构环境下,服务间的依赖日益复杂,可能没有人能说清单个故障对整个系统的影响,构建一个高可用的分布式系统面临着很大挑战.在可控范围或环境下,使用 ChaosBlade 工具,对系统注入各种故障, ...
- [***]HZOJ 柱状图
神仙题. 作者的正解: *logn). 算法三:对于100%的数据: 我们枚举屋顶位置再三分高度的做法,复杂度的瓶颈在于花费的计算.假设屋顶在i处,高度为hi,如果j<i,有hj-j=hi ...
- HZOJ 走格子
作者的正解: 对于100%的数据:行动可以分为两种: 1. 步行,花费一个单位的时间移动到4联通的相邻格子中去. 2. 使用传送门,指定一个方向的墙的前面的一个格子,步行至最近的一个墙的面前,使用传送 ...
- hdu 2312 Cliff Climbing (pfs)
Problem - 2312 一条很暴力,有点恶心的搜索.题意其实很简单,主要是pfs的时候拓展结点会有种麻烦的感觉.注意的是,这里的n和m跟平常见到的有所不同,交换过来了.我的代码就是在因为这个长宽 ...
- 从 Apache ORC 到 Apache Calcite | 2019大数据技术公开课第一季《技术人生专访》
摘要: 什么是Apache ORC开源项目?主流的开源列存格式ORC和Parquet有何区别?MaxCompute为什么选择ORC? 如何一步步成为committer和加入PMC的?在阿里和Uber总 ...
- HTML静态网页--JavaScript-语法
1.基本数据类型: 字符串.小数.整数.日期时间.布尔型等. 2.变量: 都是通用类型var,可以随便存储其他类型的值,可以直接使用,不用定义,但习惯上定义.定义变量:var a:所有变量定义 都用v ...
- GPUtil是一个Python模块,使用nvidia-smi从NVIDA GPU获取GPU状态
GPUtil是一个Python模块,使用nvidia-smi从NVIDA GPU获取GPU状态 一个Python模块,用于在Python中使用nvidia-smi以编程方式从NVIDA GPU获取GP ...
- activiti 如何使用database前缀来区分activiti数据库和业务数据库
为什么80%的码农都做不了架构师?>>> 第一步是先集成好activiti,我使用的是5.22.0,使用springboot集成,pom文件如下: <parent> ...
- mybatis PageHelper分页插件 和 LRU算法缓存读取数据
分页: PageHelper的优点是,分页和Mapper.xml完全解耦.实现方式是以插件的形式,对Mybatis执行的流程进行了强化,添加了总数count和limit查询.属于物理分页. 一.首先注 ...
- Javassist指引(二)--ClassPool
原文链接 上一章: Javassist指引(一) 2.ClassPool ClassPool是一个CtClass的容器.因为编译器随时可能访问一个CtClass类,所以一旦一个CtClass创建,它将 ...