Problem:

multi-horizon probabilistic forecasting tasks;

Propose an end-to-end framework for multi-horizon time series forecasting, with temporal attention mechanisms to capture latent patterns.

Introduction:

forecasting ----- understanding demands.

traditional methods: arima, holt-winters methods.

recently: lstm

multi-step forecasting can be naturally formulated as sequence-to-sequence learning.

???? what is sequence-to-sequence learning

??? What is multi-horizon forecasting: forecasting on multiple steps in future time.

forecasting the overall distribution!!

quantile regression to make predictions of different quantiles to approximate the target distribution without making distributional assumptions;

mean regression/ least square method;

cite 29,31 produce quantile estimations with quantile loss functions.

RELATED WORK:

1. pre-assume underlying distribution

DeepAR makes probabilistic forecasts by assuming an underlying distribution for time series data, and could produce the probability density functions for target variables by estimating the distribution parameters on each point with multi-layer perceptrons.

2. quantile regressions: don't pre-assume underlying distribution, but generate quantile estimations for target variables.

Attention mechanism, cite 3.

APPROACH:

Use a LSTM-based encoder-decoder model;

The decoder is another recurrent network which takes the encoded history as its initial state, and the future information as inputs to generate the future sequence as outputs. The decoder is bi-directional LSTM. Then the hidden states of BiLSTM are fed into a fully-connected layer/temporal convolution layer.

How to prevent error accumulation: we do not use prediction results of previous time steps to predict the current time step to prevent error accumulation.

???Hard to capture long-term dependency due to memory update. 为什么难以记录长期记忆,lstm本身就包含长期记忆啊,及时memory cell在不断的更新。

??How long the attention should be set? attending to a long history would lead to inaccurate attention as well as inefficient computation.

EXPERIMENTS

test on two datasets: public - GEFCom2014 electricity price forecasting dataset; JD50K sales dataset

multivariable time series: jd50k dataset include product region, category index, promotion type, and holiday event.

evaluate our algorithms with mean abosolute deviation平均绝对偏差, which is defined as the sum of standard quantile loss.

L(yip, yi) = max[q(yip − yi),  (q − 1)(yip − yi)]

Training and test Part: 时序数据是纵向切分的,时序数据的前时间段作为训练部分,后时间段作为测试部分。

结果: 和别的方法来比较quantile loss,提升了0.2-0.8,但是loss的最大尺度不知道,所以不知道这个0.2-0.8到底意味着多大的尺度。用MSE loss来评估,还不错,小了很多。如果是点预测的话,可以直接和真实值进行比较,但是quantile estimation就不好衡量准确性了,或者说我目前不知道对应的衡量方法。作者测试了temporal attention width, h = 1和3两个值,这个值的选取需要更多的justify.

me: 和modeling extreme event 那篇文章相比,二者同样添加了attention mechanism, 但二者的不同在与,extreme event那篇文章应用了fixed windows生成固定长度的extreme event 的attention,独立于hidden state 之外,输入是整个序列的extreme event发生与否,而本篇文章的attention是对过去数据h个hidden states的attention记录。相比之下本篇文章的网络设计技巧性更强。但如果说网络结构的创新性,如果biLSTM encoder-decoder本身存在的话,那么本文的贡献只有temporal attention mechanism. 另一个思考是,不同类型的time series,之间的自相关性不同,能不能根据它们的自相关性进行temporal attention width - h的选取标准。越自相关,越被之前的数值影响,因而更需要前面的temporal attention.

Supplementary knowledge:

?? what is temporal attention mechanism and multi-horizon time series.

PP: Multi-Horizon Time Series Forecasting with Temporal Attention Learning的更多相关文章

  1. PP: Think globally, act locally: A deep neural network approach to high-dimensional time series forecasting

    Problem: high-dimensional time series forecasting ?? what is "high-dimensional" time serie ...

  2. PP: Shape and time distortion loss for training deep time series forecasting models

    Problem: time series forecasting Challenge: forecasting for non-stationary signals and multiple futu ...

  3. An overview of time series forecasting models

    An overview of time series forecasting models 2019-10-04 09:47:05 This blog is from: https://towards ...

  4. [转]Multivariate Time Series Forecasting with LSTMs in Keras

    1. Air Pollution Forecasting In this tutorial, we are going to use the Air Quality dataset. This is ...

  5. Paper: A Novel Time Series Forecasting Method Based on Fuzzy Visibility Graph

    Problem define a fuzzy visibility graph (undirected weighted graph), then give a new similarity meas ...

  6. 【PPT】 Least squares temporal difference learning

    最小二次方时序差分学习 原文地址: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd= ...

  7. PP: Meta-learning framework with applications to zero-shot time-series forecasting

    From: Yoshua Bengio Problem: time series forecasting. Supplementary knowledge: 1. what is meta-learn ...

  8. PP: A dual-stage attention-based recurrent neural network for time series prediction

    Problem: time series prediction The nonlinear autoregressive exogenous model: The Nonlinear autoregr ...

  9. survey on Time Series Analysis Lib

    (1)I spent my 4th year Computing project on implementing time series forecasting for Java heap usage ...

随机推荐

  1. vue更改数组中的值

    根据下标更改时 vm为新建的vue对象 ind为数组 第一个e为在数组ind中e索引位置 第二个e为更改为值e vm.$set(vm.ind,e,e) 常规更改 arr为数组 //添加 arr.pus ...

  2. VUE路径问题

    import: html文件中,通过script标签引入js文件. 而vue中,通过import xxx from xxx路径的方式导入文件,不光可以导入js文件. "xxx"指的 ...

  3. Java实现impala操作kudu

    推荐阅读: 论主数据的重要性(正确理解元数据.数据元) CDC+ETL实现数据集成方案 Java实现impala操作kudu 实战kudu集成impala 对于impala而言,开发人员是可以通过JD ...

  4. React HOC(高阶组件)

    一.定义 高阶函数:函数接受函数作为输入,或者输出一个函数. 高阶组件:接受React组件作为输入,或是输出一个组件.即hocFactory:: W: React.Component => E: ...

  5. C# Winform初体验

    设计一个简单的登录窗口,要求输入用户名:小金,密码:123456时候点登录能正确转到另一个窗口. 1.建立窗体应用. 2.这里创建一个login和一个NewForm的窗体. 3.在login的窗体拖拉 ...

  6. HTML指定页面编码

    HTML指定页面编码 <meta charset="UTF-8" />

  7. Uva10820 欧拉公式模板(求小于n且与n互素的数的个数)

    题意: 给出n,算出小于等于n的所有数中,有几对互质: 解法: 本质就是求有多少个2元组(x,y)满足:1 <= x,y <= n,且x与y互素. 除了(1,1)之外,其他所有的x和y都不 ...

  8. 在 Node 中使用 formidable 处理文件上传

    具体使用方式参照官方文档:https://www.npmjs.com/package/formidable 第一:安装: # npm install --save formidable yarn ad ...

  9. C语言递归之二叉树的最小深度

    题目描述 给定一个二叉树,找出其最小深度. 最小深度是从根节点到最近叶子节点的最短路径上的节点数量. 说明: 叶子节点是指没有子节点的节点. 示例 输入:[3,9,20,null,null,15,7] ...

  10. CF1093E Intersection of Permutations [分块 +bitset]

    大家好, 我非常喜欢暴力数据结构, 于是就用分块A了此题 分块题,考虑前缀和 \(b_i\) 表示 bitset 即 \(0\) ~ $i $ 出现过的数字,然后考虑直接暴力复制块然后前缀和,修改也很 ...