PP: Multi-Horizon Time Series Forecasting with Temporal Attention Learning
Problem:
multi-horizon probabilistic forecasting tasks;
Propose an end-to-end framework for multi-horizon time series forecasting, with temporal attention mechanisms to capture latent patterns.
Introduction:
forecasting ----- understanding demands.
traditional methods: arima, holt-winters methods.
recently: lstm
multi-step forecasting can be naturally formulated as sequence-to-sequence learning.
???? what is sequence-to-sequence learning
??? What is multi-horizon forecasting: forecasting on multiple steps in future time.
forecasting the overall distribution!!
quantile regression to make predictions of different quantiles to approximate the target distribution without making distributional assumptions;
mean regression/ least square method;
cite 29,31 produce quantile estimations with quantile loss functions.
RELATED WORK:
1. pre-assume underlying distribution
DeepAR makes probabilistic forecasts by assuming an underlying distribution for time series data, and could produce the probability density functions for target variables by estimating the distribution parameters on each point with multi-layer perceptrons.
2. quantile regressions: don't pre-assume underlying distribution, but generate quantile estimations for target variables.
Attention mechanism, cite 3.
APPROACH:
Use a LSTM-based encoder-decoder model;
The decoder is another recurrent network which takes the encoded history as its initial state, and the future information as inputs to generate the future sequence as outputs. The decoder is bi-directional LSTM. Then the hidden states of BiLSTM are fed into a fully-connected layer/temporal convolution layer.
How to prevent error accumulation: we do not use prediction results of previous time steps to predict the current time step to prevent error accumulation.
???Hard to capture long-term dependency due to memory update. 为什么难以记录长期记忆,lstm本身就包含长期记忆啊,及时memory cell在不断的更新。
??How long the attention should be set? attending to a long history would lead to inaccurate attention as well as inefficient computation.
EXPERIMENTS
test on two datasets: public - GEFCom2014 electricity price forecasting dataset; JD50K sales dataset
multivariable time series: jd50k dataset include product region, category index, promotion type, and holiday event.
evaluate our algorithms with mean abosolute deviation平均绝对偏差, which is defined as the sum of standard quantile loss.
L(yip, yi) = max[q(yip − yi), (q − 1)(yip − yi)]
Training and test Part: 时序数据是纵向切分的,时序数据的前时间段作为训练部分,后时间段作为测试部分。
结果: 和别的方法来比较quantile loss,提升了0.2-0.8,但是loss的最大尺度不知道,所以不知道这个0.2-0.8到底意味着多大的尺度。用MSE loss来评估,还不错,小了很多。如果是点预测的话,可以直接和真实值进行比较,但是quantile estimation就不好衡量准确性了,或者说我目前不知道对应的衡量方法。作者测试了temporal attention width, h = 1和3两个值,这个值的选取需要更多的justify.
me: 和modeling extreme event 那篇文章相比,二者同样添加了attention mechanism, 但二者的不同在与,extreme event那篇文章应用了fixed windows生成固定长度的extreme event 的attention,独立于hidden state 之外,输入是整个序列的extreme event发生与否,而本篇文章的attention是对过去数据h个hidden states的attention记录。相比之下本篇文章的网络设计技巧性更强。但如果说网络结构的创新性,如果biLSTM encoder-decoder本身存在的话,那么本文的贡献只有temporal attention mechanism. 另一个思考是,不同类型的time series,之间的自相关性不同,能不能根据它们的自相关性进行temporal attention width - h的选取标准。越自相关,越被之前的数值影响,因而更需要前面的temporal attention.
Supplementary knowledge:
?? what is temporal attention mechanism and multi-horizon time series.
PP: Multi-Horizon Time Series Forecasting with Temporal Attention Learning的更多相关文章
- PP: Think globally, act locally: A deep neural network approach to high-dimensional time series forecasting
Problem: high-dimensional time series forecasting ?? what is "high-dimensional" time serie ...
- PP: Shape and time distortion loss for training deep time series forecasting models
Problem: time series forecasting Challenge: forecasting for non-stationary signals and multiple futu ...
- An overview of time series forecasting models
An overview of time series forecasting models 2019-10-04 09:47:05 This blog is from: https://towards ...
- [转]Multivariate Time Series Forecasting with LSTMs in Keras
1. Air Pollution Forecasting In this tutorial, we are going to use the Air Quality dataset. This is ...
- Paper: A Novel Time Series Forecasting Method Based on Fuzzy Visibility Graph
Problem define a fuzzy visibility graph (undirected weighted graph), then give a new similarity meas ...
- 【PPT】 Least squares temporal difference learning
最小二次方时序差分学习 原文地址: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd= ...
- PP: Meta-learning framework with applications to zero-shot time-series forecasting
From: Yoshua Bengio Problem: time series forecasting. Supplementary knowledge: 1. what is meta-learn ...
- PP: A dual-stage attention-based recurrent neural network for time series prediction
Problem: time series prediction The nonlinear autoregressive exogenous model: The Nonlinear autoregr ...
- survey on Time Series Analysis Lib
(1)I spent my 4th year Computing project on implementing time series forecasting for Java heap usage ...
随机推荐
- JDK SPI 机制
一.概述 最早看到 SPI 这个机制是在 dubbo 实现 中,最近发现原来也不是什么新东西,竟然就是 JDK 中内置的玩意,今天就来一探究竟,看看它到底是什么玩意! SPI的全称是 Service ...
- Linux如何定位文件在磁盘的物理位置
我在学习研究Linux内核结构的时候,思考过一个问题:Linux如何定位文件在磁盘的物理位置每个文件都有一个inode,inode在内核代码中的数据结构如下: 1 struct ext4_inode ...
- win10安装两个不同版本的mysql(mysql5.7和mysql-8.0.19)
win10中安装mysql5.7后,安装mysql-8.0.19 在D:\mysql-8.0.19-winx64目录下创建一个my.ini文件 [mysqld] # 设置3307端口 port # 设 ...
- 外部SRAM的种类
外部SRAM注意事项 为使外部SRAM器件达到出最佳性能,建议遵循以下原则: 使用与连接的主系统控制器的接口数据带宽相同的SRAM. 如果管脚使用或板上空间的限制高于系统性能要求,可以使用较连接的控制 ...
- Asp.Net Core 3.1 集成Swagger
引入Nuget包 Swashbuckle.AspNetCore.SwaggerGen Swashbuckle.AspNetCore.SwaggerUI 配置Startup 配置ConfigureSer ...
- 关于对 softirq、work_queue、tasklet 学习后的一点总结
本文基于linux版本:4.14.111 简单的总结下 softirq.work_queue.tasklet 三种中断下半部的工作原理及区别,并附上三种形式的简单实例. 一.运行原理① softirq ...
- spring security之web应用安全
一.什么是web应用安全,为了安全我们要做哪些事情? 保护web资源不受侵害(资源:用户信息.用户财产.web数据信息等)对访问者的认证.授权,指定的用户才可以访问资源访问者的信息及操作得到保护(xs ...
- jquery ajax简单书写
占时无法显示该内容,请稍后再试 $.ajax({ url:"http://v.juhe.cn/weather/index", data:{cityname:"苏州&quo ...
- Freefilesync-文件夹自动同步
在企业的相关设置中,若两台物理机,主副之间需要做到文件同步,可以推荐使用Freefilesync作为自动同步设置 话不多说,直接搞机 开始设置好文件比对-点击红色漏斗设置(比较/同步) 点击确定 手动 ...
- linux安装Nginx 以及 keepalived 管理Nginx
linux安装Nginx 1.1将Nginx素材内容上传到/usr/local目录(pcre,zlib,openssl,nginx)(注意:必须登录用对这个文件具有操作权限的) 1.2安装pcre库 ...