Johnson–Lindenstrauss 定理-Johnson–Lindenstrauss lemma
Johnson–Lindenstrauss 定理是这样的:一个一百万维空间里的随便一万个点,一定可以几乎被装进一个几十维的子空间里!
严格说来是这样:在 M 维空间中的 N 个点,几乎总是被包含在一个 D 维子空间里的。这里的 D 按照直觉应当等于 N 的阶,可是实际上我们只需要让 D 是 log(N) 的阶就可以了。这里「几乎被包含在」的确切含义是它在这个子空间上的投影几乎是等距的(允许有一个 ε 的误差,而常数 D/log(N) 就依赖于 ε)。很显然,这件事情在高维数据降维时有极重要的意义。
这个定理的证明很初等。它依赖于这样的一个基本概率事实:一个随机的 M 维单位向量到一个随机的 D 维子空间上的投影的长度几乎一定约等于 D/M。这件事情本身也有点不同寻常,虽然它可以通过简单的计算来证实。这是概率论计算中常常出现的由于高维度而导致的反直觉现象的一例。
这让我想起另一个高维度导致的悖论,是我在学大数定律时了解到的。在 M 维单位立方体中随机取一个点,当 M 充分大时根据大数定理容易算出这个点到立方体中心的距离几乎一定等于 √(M/3)/2。于是这就说明 M 维实心单位立方体几乎就完全位于一个半径为 √(M/3)/2 的球壳上。这里没有任何捣鬼之处,事实上就是如此。
Johnson–Lindenstrauss 引理表明任何高维数据集均可以被随机投影到一个较低维度的欧氏空间,同时可以控制pairwise距离的失真.
理论边界
由一个随机投影P所引入的失真是确定的,这是由于p定义了一个esp-embedding.其概率论定义如下:
u和v是从一个形状是[n样例,n特征]=[n_samples, n_features]的数据集中的任意行,p室友一个形状是[n成分,n特征]=[n_components, n_features]的随机高斯N(0,1)矩阵的投影(或一个稀疏Achlioptas矩阵).
用于保证eps-embedding的最小成分数有下面的公式得到:
Johnson–Lindenstrauss 定理-Johnson–Lindenstrauss lemma的更多相关文章
- 最短路径算法——Dijkstra,Bellman-Ford,Floyd-Warshall,Johnson
根据DSqiu的blog整理出来 :http://dsqiu.iteye.com/blog/1689163 PS:模板是自己写的,如有错误欢迎指出~ 本文内容框架: §1 Dijkstra算法 §2 ...
- Latex中定义、定理、引理、证明 设置方法总结
Latex中定义.定理.引理.证明 设置方法总结 在LaTex中需要有关定理.公理.命题.引理.定义等时,常用如下命令 \newtheorem{定理环境名}{标题}[主计数器名] \newtheore ...
- Theorem、Proposition、Lemma和Corollary等的解释与区别
Theorem:定理.是文章中重要的数学化的论述,一般有严格的数学证明. Proposition:可以翻译为命题,经过证明且interesting,但没有Theorem重要,比较常用. Lemma:一 ...
- [未完成]scikit-learn一般实例之九:用于随机投影嵌入的Johnson–Lindenstrauss lemma边界
Johnson–Lindenstrauss 引理表明任何高维数据集均可以被随机投影到一个较低维度的欧氏空间,同时可以控制pairwise距离的失真. 理论边界 由一个随机投影P所引入的失真是确定的,这 ...
- 基于Hash算法的高维数据的最近邻检索
一.摘要 最紧邻检索:一种树基于树结构,一种是基于hash a.随机投影算法,需要产生很多哈希表,才能提高性能. b.基于学习的哈希算法在哈希编码较短时候性能不错,但是增加编码长度并不能显著提高性能. ...
- NLP相关问题中文本数据特征表达初探
1. NLP问题简介 0x1:NLP问题都包括哪些内涵 人们对真实世界的感知被成为感知世界,而人们用语言表达出自己的感知视为文本数据.那么反过来,NLP,或者更精确地表达为文本挖掘,则是从文本数据出发 ...
- NLP问题特征表达基础 - 语言模型(Language Model)发展演化历程讨论
1. NLP问题简介 0x1:NLP问题都包括哪些内涵 人们对真实世界的感知被成为感知世界,而人们用语言表达出自己的感知视为文本数据.那么反过来,NLP,或者更精确地表达为文本挖掘,则是从文本数据出发 ...
- Java牛人
Java领域有很多著名的人物,他们为Java社区编写框架.产品.工具或撰写书籍改变了Java编程的方式.本文是<最受欢迎的8位Java牛人>的2.0版本. PS:排名不分先后.本文的信息整 ...
- Address Book(地址薄)
<?xml version="1.0" encoding="UTF-8"?> <?import javafx.scene.Scene?> ...
随机推荐
- 暑假集训test-8-31(am)
1.字符串匹配 看到题目以为真是字符串题结果是数学题..70分做法很傻逼然而我更傻逼只有30... 正解是发现两个位置会匹配当且仅当mod gcd(lena,lenb)同余,在一个lcm(lena,l ...
- Mac OS 快速查询技巧
今天不知道按到什么快捷键弹出了这个搜索框,试了试很强大 后来查了才知道要双击键盘上的key (⌘)就会弹出,这个搜索很强大,要先安装QQ,QQ自带的 版权声明:本文为博主原创文章,未经博主允许不得转载 ...
- JTable更新内容的方法
JTable更新内容的方法 DefaultTableModel dtm=new DefaultTableModel(data,head);//定义表格模型 jt.setModel(dtm);或jt=n ...
- bootstrap中container和container-fluid的区别
container和container-fluid 在bootstrap中,两者都是设置文本居中,但是它们还是有很大差别的 container 是随屏幕宽度的变化而变化的,是阶段性变化,有一个随浏览器 ...
- python之tkinter学习目录
前言 下面的目录结构,采用的学习视频资料是网易云课堂中[莫凡]老师的,在目录的最下面的地方给出了对应的链接! 学习是逐渐积累起来的,代码也是!下面的每一篇中的对应代码,都秉承着这样的一个理念:代码是成 ...
- Codeforces 1182A Filling Shapes
题目链接:http://codeforces.com/problemset/problem/1182/A 思路:n为奇数时不可能完全填充,ans = 0.发现若要完全填充,每俩列可产生俩种情况,所以为 ...
- !!!myeclipse 上加载本地图片问题,无法加载问题
出现无法加载本地图片的问题, 原因就是把图片放到了本地项目中的image了,但是myeclipse上没有刷新 这样以后 本地的图片比在线的要快 低级错误,诶!
- enumrate用法
转自*https://www.runoob.com/python/python-func-enumerate.html*侵删 描述 enumerate() 函数用于将一个可遍历的数据对象(如列表.元组 ...
- cms系统视频分享
cms_001-CMS系统功能需求简介-1.avicms_002-如何采用用例分析方法来理解需求-1.avicms_003-后台管理系统用例-1.avicms_004-实现验证码的初步思路-1.avi ...
- python 九九乘法口诀
for i in range(1,10): for j in range(1,i+1): print(j,"*",i,"=",i*j,&qu ...