CF1067E Random Forest Rank

可以证明:

一个树的邻接矩阵的秩,等于最大匹配数*2(虽然我只能证明下界是最大匹配)

而树的最大匹配可以贪心,

不妨用DP模拟这个过程

f[x][0/1]表示,x为根的子树,所有情况下,按照贪心使得x被选/没有没选,的最大匹配的总和

g[x][0/1]为方案数。

转移时候讨论即可。

#include<bits/stdc++.h>
#define reg register int
#define il inline
#define fi first
#define se second
#define mk(a,b) make_pair(a,b)
#define numb (ch^'0')
#define pb push_back
#define solid const auto &
#define enter cout<<endl
#define pii pair<int,int>
using namespace std;
typedef long long ll;
template<class T>il void rd(T &x){
char ch;x=;bool fl=false;while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
for(x=numb;isdigit(ch=getchar());x=x*+numb);(fl==true)&&(x=-x);}
template<class T>il void output(T x){if(x/)output(x/);putchar(x%+'');}
template<class T>il void ot(T x){if(x<) putchar('-'),x=-x;output(x);putchar(' ');}
template<class T>il void prt(T a[],int st,int nd){for(reg i=st;i<=nd;++i) ot(a[i]);putchar('\n');}
namespace Modulo{
const int mod=;
int ad(int x,int y){return (x+y)>=mod?x+y-mod:x+y;}
void inc(int &x,int y){x=ad(x,y);}
int mul(int x,int y){return (ll)x*y%mod;}
void inc2(int &x,int y){x=mul(x,y);}
int qm(int x,int y=mod-){int ret=;while(y){if(y&) ret=mul(x,ret);x=mul(x,x);y>>=;}return ret;}
template<class ...Args>il int ad(const int a,const int b,const Args &...args) {return ad(ad(a,b),args...);}
template<class ...Args>il int mul(const int a,const int b,const Args &...args) {return mul(mul(a,b),args...);}
}
using namespace Modulo;
namespace Miracle{
const int N=5e5+;
int n;
struct node{
int nxt,to;
}e[*N];
int hd[N],cnt;
void add(int x,int y){
e[++cnt].nxt=hd[x];
e[cnt].to=y;
hd[x]=cnt;
}
int f[N][],g[N][];
void dfs(int x,int fa){
g[x][]=;
for(reg i=hd[x];i;i=e[i].nxt){
int y=e[i].to;
if(y==fa) continue;
dfs(y,x);
int f1=,f0=,g1=,g0=;
//exi
inc(f1,ad(mul(f[x][],g[y][]),mul(g[x][],f[y][]),mul(g[x][],g[y][])));
inc(f1,ad(mul(f[x][],g[y][]),mul(g[x][],f[y][]),mul(f[x][],g[y][]),mul(g[x][],f[y][])));
inc(g1,ad(mul(g[x][],g[y][]),mul(g[x][],g[y][]),mul(g[x][],g[y][])));
inc(f0,ad(mul(f[x][],g[y][]),mul(g[x][],f[y][])));
inc(g0,mul(g[x][],g[y][]));
//not
inc(f1,ad(mul(f[x][],ad(g[y][],g[y][])),mul(g[x][],ad(f[y][],f[y][]))));
inc(f0,ad(mul(f[x][],ad(g[y][],g[y][])),mul(g[x][],ad(f[y][],f[y][]))));
inc(g1,mul(g[x][],ad(g[y][],g[y][])));
inc(g0,mul(g[x][],ad(g[y][],g[y][]))); f[x][]=f1;f[x][]=f0;g[x][]=g1;g[x][]=g0;
}
}
int main(){
rd(n);
int x,y;
for(reg i=;i<n;++i){
rd(x);rd(y);add(x,y);add(y,x);
}
dfs(,);
int ans=mul(ad(f[][],f[][]),);
ot(ans);
return ;
} }
signed main(){
Miracle::main();
return ;
} /*
Author: *Miracle*
*/

然后CF讨论里一个julao提出一个更简单的方法

直接计算f[x]表示x和某个儿子有匹配的概率

根据期望的线性性,直接f[x]相加就是答案。

那么,f[x]=1-无法匹配的概率,

代码如下:

CF1067E Random Forest Rank的更多相关文章

  1. CodeForces 1067E Random Forest Rank

    题意 给定一棵 \(n\) 个节点的树,每条边有 \(\frac{1}{2}\) 的概率出现,这样会得出一个森林,求这个森林的邻接矩阵 \(A\) 的秩 \(\operatorname{rank} A ...

  2. Codeforces 1067E - Random Forest Rank(找性质+树形 dp)

    Codeforces 题面传送门 & 洛谷题面传送门 一道不知道能不能算上自己 AC 的 D1E(?) 挺有意思的结论题,结论倒是自己猜出来了,可根本不会证( 开始搬运题解 ing: 碰到这样 ...

  3. [Machine Learning & Algorithm] 随机森林(Random Forest)

    1 什么是随机森林? 作为新兴起的.高度灵活的一种机器学习算法,随机森林(Random Forest,简称RF)拥有广泛的应用前景,从市场营销到医疗保健保险,既可以用来做市场营销模拟的建模,统计客户来 ...

  4. paper 85:机器统计学习方法——CART, Bagging, Random Forest, Boosting

    本文从统计学角度讲解了CART(Classification And Regression Tree), Bagging(bootstrap aggregation), Random Forest B ...

  5. paper 56 :机器学习中的算法:决策树模型组合之随机森林(Random Forest)

    周五的组会如约而至,讨论了一个比较感兴趣的话题,就是使用SVM和随机森林来训练图像,这样的目的就是 在图像特征之间建立内在的联系,这个model的训练,着实需要好好的研究一下,下面是我们需要准备的入门 ...

  6. 多分类问题中,实现不同分类区域颜色填充的MATLAB代码(demo:Random Forest)

    之前建立了一个SVM-based Ordinal regression模型,一种特殊的多分类模型,就想通过可视化的方式展示模型分类的效果,对各个分类区域用不同颜色表示.可是,也看了很多代码,但基本都是 ...

  7. Ensemble Learning 之 Bagging 与 Random Forest

    Bagging 全称是 Boostrap Aggregation,是除 Boosting 之外另一种集成学习的方式,之前在已经介绍过关与 Ensemble Learning 的内容与评价标准,其中“多 ...

  8. Aggregation(1):Blending、Bagging、Random Forest

    假设我们有很多机器学习算法(可以是前面学过的任何一个),我们能不能同时使用它们来提高算法的性能?也即:三个臭皮匠赛过诸葛亮. 有这么几种aggregation的方式: 一些性能不太好的机器学习算法(弱 ...

  9. Plotting trees from Random Forest models with ggraph

    Today, I want to show how I use Thomas Lin Pederson's awesome ggraph package to plot decision trees ...

随机推荐

  1. Sping中的AOP

    AOP(Aspect Oriented Programming)面向切面编程,什么是切面.形象的说,我们编写的代码都是一种有序的流程,比如产品管理,订单管理,而切面就是垂直于这些流程的. 比如日志服务 ...

  2. Cooki and Session

    目录 Cookie Cookie的由来 什么是Cookie Cookie的原理 查看Cookie Django中操作Cookie 获取Cookie 设置Cookie 删除Cookie Session ...

  3. Lua语言入门

    (摘自Lua程序设计) Lua语言中的标识符(或名称)是由任意字母丶数字和下划线组成的字符串(注意不能以数字开头) 下划线加大写字母组成的标识符通常被Lua语言用作特殊用途,应避免将其用作其他用途. ...

  4. Leetcode513. Find Bottom Left Tree Value找树左下角的值

    给定一个二叉树,在树的最后一行找到最左边的值. 示例 1: 输入: 2 / \ 1 3 输出: 1 示例 2: 输入: 1 / \ 2 3 / / \ 4 5 6 / 7 输出: 7 注意: 您可以假 ...

  5. c++设计模式:模板模式

    模板模式和策略模式的区别: 模板方法模式的主要思想:定义一个算法流程,将一些特定步骤的具体实现.延迟到子类.使得可以在不改变算法流程的情况下,通过不同的子类.来实现“定制”流程中的特定的步骤. 策略模 ...

  6. 组件:参数验证props:组件参数验证语法

    <!DOCTYPE html> <html lang="zh"> <head> <title></title> < ...

  7. 【agc019f】AtCoder Grand Contest 019 F - Yes or No

    题意 有n个问题答案为YES,m个问题答案为NO. 你只知道剩下的问题的答案分布情况. 问回答完N+M个问题,最优策略下的期望正确数. 解法 首先确定最优策略, 对于\(n<m\)的情况,肯定回 ...

  8. pip安装requests报错unicodeEncodeError:'ascii' codec can\t encode charactesers in position 9-12:ordinal not in range(128)

    前提 : 已经安装pip(pip的安装我参考的是本博客转载脚本之家的步骤,实验可以成功) 1. 在cmd输入命令转到pip安装目录: 2. 运行后出现错误 3. 步骤2中的错误应该和编码有关.搜索百度 ...

  9. 如何收缩Mysql的ibdata1文件

    ibdata1是MySQL数据库中一个数据文件了,你会发现它来越大了,下面我来介绍收缩Mysql的ibdata1文件大小方法. 如果你有使用InnoDB来存储你的Mysql表,使用默认设置应该会碰到个 ...

  10. 2019.10.29 csp-s模拟测试93 反思总结

    T1: 求出前缀和,三维偏序O(nlog2n)CDQ 二维其实就可以 #include<iostream> #include<cstdio> #include<cstri ...