http://www.cnitblog.com/weiweibbs/articles/42735.html

上一期的文章里我们仔细研究了Nim游戏,并且了解了找出必胜策略的方法。但如果把Nim的规则略加改变,你还能很快找出必胜策略吗?比如说:有n堆石子,每次可以从第1堆石子里取1颗、2颗或3颗,可以从第2堆石子里取奇数颗,可以从第3堆及以后石子里取任意颗……这时看上去问题复杂了很多,但相信你如果掌握了本节的内容,类似的千变万化的问题都是不成问题的。

现在我们来研究一个看上去似乎更为一般的游戏:给定一个有向无环图和一个起始顶点上的一枚棋子,两名选手交替的将这枚棋子沿有向边进行移动,无法移动者判负。事实上,这个游戏可以认为是所有Impartial Combinatorial Games的抽象模型。也就是说,任何一个ICG都可以通过把每个局面看成一个顶点,对每个局面和它的子局面连一条有向边来抽象成这个“有向图游戏”。下面我们就在有向无环图的顶点上定义Sprague-Garundy函数。

首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数。例如mex{0,1,2,4}=3、mex{2,3,5}=0、mex{}=0。

对于一个给定的有向无环图,定义关于图的每个顶点的Sprague-Garundy函数g如下:g(x)=mex{ g(y) | y是x的后继 }。

来看一下SG函数的性质。首先,所有的terminal position所对应的顶点,也就是没有出边的顶点,其SG值为0,因为它的后继集合是空集。然后对于一个g(x)=0的顶点x,它的所有后继y都满足g(y)!=0。对于一个g(x)!=0的顶点,必定存在一个后继y满足g(y)=0。

以上这三句话表明,顶点x所代表的postion是P-position当且仅当g(x)=0(跟P-positioin/N-position的定义的那三句话是完全对应的)。我们通过计算有向无环图的每个顶点的SG值,就可以对每种局面找到必胜策略了。但SG函数的用途远没有这样简单。如果将有向图游戏变复杂一点,比如说,有向图上并不是只有一枚棋子,而是有n枚棋子,每次可以任选一颗进行移动,这时,怎样找到必胜策略呢?

让我们再来考虑一下顶点的SG值的意义。当g(x)=k时,表明对于任意一个0<=i<k,都存在x的一个后继y满足g(y)=i。也就是说,当某枚棋子的SG值是k时,我们可以把它变成0、变成1、……、变成k-1,但绝对不能保持k不变。不知道你能不能根据这个联想到Nim游戏,Nim游戏的规则就是:每次选择一堆数量为k的石子,可以把它变成0、变成1、……、变成k-1,但绝对不能保持k不变。这表明,如果将n枚棋子所在的顶点的SG值看作n堆相应数量的石子,那么这个Nim游戏的每个必胜策略都对应于原来这n枚棋子的必胜策略!

对于n个棋子,设它们对应的顶点的SG值分别为(a1,a2,...,an),再设局面(a1,a2,...,an)时的Nim游戏的一种必胜策略是把ai变成k,那么原游戏的一种必胜策略就是把第i枚棋子移动到一个SG值为k的顶点。这听上去有点过于神奇——怎么绕了一圈又回到Nim游戏上了。

其实我们还是只要证明这种多棋子的有向图游戏的局面是P-position当且仅当所有棋子所在的位置的SG函数的异或为0。这个证明与上节的Bouton's Theorem几乎是完全相同的,只需要适当的改几个名词就行了。

刚才,我为了使问题看上去更容易一些,认为n枚棋子是在一个有向图上移动。但如果不是在一个有向图上,而是每个棋子在一个有向图上,每次可以任选一个棋子(也就是任选一个有向图)进行移动,这样也不会给结论带来任何变化。

所以我们可以定义有向图游戏的和(Sum of Graph Games):设G1、G2、……、Gn是n个有向图游戏,定义游戏G是G1、G2、……、Gn的和(Sum),游戏G的移动规则是:任选一个子游戏Gi并移动上面的棋子。Sprague-Grundy Theorem就是:g(G)=g(G1)^g(G2)^...^g(Gn)。也就是说,游戏的和的SG函数值是它的所有子游戏的SG函数值的异或。

再考虑在本文一开头的一句话:任何一个ICG都可以抽象成一个有向图游戏。所以“SG函数”和“游戏的和”的概念就不是局限于有向图游戏。我们给每个ICG的每个position定义SG值,也可以定义n个ICG的和。所以说当我们面对由n个游戏组合成的一个游戏时,只需对于每个游戏找出求它的每个局面的SG值的方法,就可以把这些SG值全部看成Nim的石子堆,然后依照找Nim的必胜策略的方法来找这个游戏的必胜策略了!

回到本文开头的问题。有n堆石子,每次可以从第1堆石子里取1颗、2颗或3颗,可以从第2堆石子里取奇数颗,可以从第3堆及以后石子里取任意颗……我们可以把它看作3个子游戏,第1个子游戏只有一堆石子,每次可以取1、2、3颗,很容易看出x颗石子的局面的SG值是x%4。第2个子游戏也是只有一堆石子,每次可以取奇数颗,经过简单的画图可以知道这个游戏有x颗石子时的SG值是x%2。第3个游戏有n-2堆石子,就是一个Nim游戏。对于原游戏的每个局面,把三个子游戏的SG值异或一下就得到了整个游戏的SG值,然后就可以根据这个SG值判断是否有必胜策略以及做出决策了。其实看作3个子游戏还是保守了些,干脆看作n个子游戏,其中第1、2个子游戏如上所述,第3个及以后的子游戏都是“1堆石子,每次取几颗都可以”,称为“任取石子游戏”,这个超简单的游戏有x颗石子的SG值显然就是x。其实,n堆石子的Nim游戏本身不就是n个“任取石子游戏”的和吗?

所以,对于我们来说,SG函数与“游戏的和”的概念不是让我们去组合、制造稀奇古怪的游戏,而是把遇到的看上去有些复杂的游戏试图分成若干个子游戏,对于每个比原游戏简化很多的子游戏找出它的SG函数,然后全部异或起来就得到了原游戏的SG函数,就可以解决原游戏了。这种“分而治之”的思想在下一节介绍的“翻硬币游戏”中将被应用得淋漓尽致。还是敬请期待。

个人对sg函数的理解:

假设每次只能去{1,2,3};

x      0  1  2  3  4  5  6  7  8  9  10  11  12

sg    0  1  2  3  0  1  2  3  0   1    2   3   0

发现sg的值就是当前为了获胜所需要取的个数。如果sg[x]==0,那么处于必败态,必输。

P-点: 即令 g(x) = 0 的 x 点!
N-点: 即令 g(x) > 0 的 x 点!

//f[]:可以取走的石子个数
//sg[]:0~n的SG函数值
//hash[]:mex{}
int f[K],sg[N],hash[N];
void getSG(int n)
{
memset(sg,,sizeof(sg));
for(int i=; i<=n; i++) {
memset(hash,,sizeof(hash));
for(int j=; f[j]<=i && j < k; j++) //k是f[]的有效长度
hash[sg[i-f[j]]]=;
for(int j=; ; j++) { //求mes{}中未出现的最小的非负整数
if(hash[j]==) {
sg[i]=j;
break;
}
}
}
}

【转】Sprague-Grundy函数的更多相关文章

  1. SRM 624 D2L3: GameOfSegments, 博弈论,Sprague–Grundy theorem,Nimber

    题目:http://community.topcoder.com/stat?c=problem_statement&pm=13204&rd=15857 这道题目须要用到博弈论中的经典理 ...

  2. 博弈SG函数

    转自:Sprague-Grundy Function-SG函数--博弈论(3) 公平游戏的Sprague-Grundy定理 公平游戏是一种双人游戏,在游戏中双方都有完整的信息,没有牵涉,任何状态的合法 ...

  3. 博弈论:寻找先手必胜策略——Grundy值

    选修了人工智能课程,老师布置了调研任务:Grundy,开始看了一些资料并没有看懂. 后来找到了一篇文,写的很棒,里面有好多博弈相关的问题与分析,分享出来给大家: http://endless.logd ...

  4. 4.1.6 Grundy数-硬币游戏2

    Problem Description: Alice 和 Bob 在玩一个游戏.给定 k 个数字 a1,a2,……,ak.一开始,有n堆硬币,每堆各有 Xi 枚硬币.Alice 和 Bob 轮流选出一 ...

  5. Python 小而美的函数

    python提供了一些有趣且实用的函数,如any all zip,这些函数能够大幅简化我们得代码,可以更优雅的处理可迭代的对象,同时使用的时候也得注意一些情况   any any(iterable) ...

  6. 探究javascript对象和数组的异同,及函数变量缓存技巧

    javascript中最经典也最受非议的一句话就是:javascript中一切皆是对象.这篇重点要提到的,就是任何jser都不陌生的Object和Array. 有段时间曾经很诧异,到底两种数据类型用来 ...

  7. JavaScript权威指南 - 函数

    函数本身就是一段JavaScript代码,定义一次但可能被调用任意次.如果函数挂载在一个对象上,作为对象的一个属性,通常这种函数被称作对象的方法.用于初始化一个新创建的对象的函数被称作构造函数. 相对 ...

  8. C++对C的函数拓展

    一,内联函数 1.内联函数的概念 C++中的const常量可以用来代替宏常数的定义,例如:用const int a = 10来替换# define a 10.那么C++中是否有什么解决方案来替代宏代码 ...

  9. 菜鸟Python学习笔记第一天:关于一些函数库的使用

    2017年1月3日 星期二 大一学习一门新的计算机语言真的很难,有时候连函数拼写出错查错都能查半天,没办法,谁让我英语太渣. 关于计算机语言的学习我想还是从C语言学习开始为好,Python有很多语言的 ...

  10. javascript中的this与函数讲解

    前言 javascript中没有块级作用域(es6以前),javascript中作用域分为函数作用域和全局作用域.并且,大家可以认为全局作用域其实就是Window函数的函数作用域,我们编写的js代码, ...

随机推荐

  1. [Day4] Nginx Http模块二

    一. POST_READ阶段     1. 用户ip在http请求中的传递? 前提:Tcp连接四元组(src ip,src port,dst ip,dst port) HTTP头部 X-Formard ...

  2. JasperReport编译报表设计5

    我们在前面的章节中产生的JasperReport模板(JRXML文件).这个文件不能直接用于生成报告.它必须被编译成JasperReport的“本地二进制"格式,称为Jasperfile.在 ...

  3. Leetcode414Third Maximum Number第三大的数

    给定一个非空数组,返回此数组中第三大的数.如果不存在,则返回数组中最大的数.要求算法时间复杂度必须是O(n). 示例 1: 输入: [3, 2, 1] 输出: 1 解释: 第三大的数是 1. 示例 2 ...

  4. TZ_16_Vue的idea入门

    1.Vue (读音 /vjuː/,类似于 view) 是一套用于构建用户界面的渐进式框架.与其它大型框架不同的是,Vue 被设计为可以自底向上逐层应用.Vue 的核心库只关注视图层,不仅易于上手,还便 ...

  5. WebGis二次开发包实例

    <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="index.aspx.cs& ...

  6. android 数据库存取图片

    Android数据库中存取图片通常使用两种方式,一种是保存图片所在路径,二是将图片以二进制的形式存储(sqlite3支持BLOB数据类型).对于两种方法的使用,好像第二种方法不如第一种方法更受程序员欢 ...

  7. 洛谷P1263 宫廷守卫

    P1263 宫廷守卫 题目描述 从前有一个王国,这个王国的城堡是一个矩形,被分为M×N个方格.一些方格是墙,而另一些是空地.这个王国的国王在城堡里设了一些陷阱,每个陷阱占据一块空地. 一天,国王决定在 ...

  8. NOIP模拟 6.28

    NOIP模拟赛6.28 Problem 1 高级打字机(type.cpp/c/pas) [题目描述] 早苗入手了最新的高级打字机.最新款自然有着与以往不同的功能,那就是它具备撤销功能,厉害吧. 请为这 ...

  9. vue+ElementUI项目中,上传控件为必填项,上传图片后清空提示信息

    (ps:以下是我在项目中遇到得问题及解决方法,希望对你们有帮助.如果还有其他方法,可以留言,谢谢) 一个表单页面,使用element-ui中el-upload上传图片,此项为必填项,然后写了校验规则, ...

  10. 基于 DataLakeAnalytics 的数据湖实践

    随着软硬件各方面条件的成熟,数据湖(Data Lake)已经越来越受到各大企业的青睐, 与传统的数仓实践不一样的是,数据湖不需要专门的“入仓”的过程,数据在哪里,我们就从哪里读取数据进行分析.这样的好 ...