Triangle War
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 2685   Accepted: 1061

Description

Triangle War is a two-player game played on the following triangular grid: 


Two players, A and B, take turns filling in any dotted line connecting two dots, with A starting first. Once a line is filled, it cannot be filled again. If the line filled by a player completes one or more triangles, she owns the completed triangles and she
is awarded another turn (i.e. the opponent skips a turn). The game ends after all dotted lines are filled in, and the player with the most triangles wins the game. The difference in the number of triangles owned by the two players is not important. 

For example, if A fills in the line between 2 and 5 in the partial game on the left below: 


Then, she owns the triangle labelled A and takes another turn to fill in the line between 3 and 5. B can now own 3 triangles (if he wishes) by filling in the line between 2 and 3, then the one between 5 and 6, and finally the one between 6 and 9. B would then
make one more move before it is A's turn again. 
In this problem, you are given a number of moves that have already been made. From the partial game, you should determine which player will win assuming that each player plays a perfect game from that point on. That is, assume that each player always chooses
the play that leads to the best possible outcome for himself/herself.

Input

You will be given a number of games in the input. The first line of input is a positive integer indicating the number of games to follow. Each game starts with an integer 6 <= m <= 18 indicating the number of moves that have been made in the game. The next
m lines indicate the moves made by the two players in order, each of the form i j (with i < j) indicating that the line between i and j is filled in that move. You may assume that all given moves are legal.

Output

For each game, print the game number and the result on one line as shown below. If A wins, print the sentence "A wins." If B wins, print "B wins."

Sample Input

4
6
2 4
4 5
5 9
3 6
2 5
3 5
7
2 4
4 5
5 9
3 6
2 5
3 5
7 8
6
1 2
2 3
1 3
2 4
2 5
4 5
10
1 2
2 5
3 6
5 8
4 7
6 10
2 4
4 5
4 8
7 8

Sample Output

Game 1: B wins.
Game 2: A wins.
Game 3: A wins.
Game 4: B wins.

Source

题意:

两个人玩游戏,依次在三角形上放边,假设能构成三角形。则奖励继续该此人放,问最后得到的三角形多。

思路:

给边编号,记忆化搜索即可。做过好多这样的题。就不多写思路了。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#pragma comment (linker,"/STACK:102400000,102400000")
#define maxn 1005
#define MAXN 50005
#define mod 1000000009
#define INF 0x3f3f3f3f
#define pi acos(-1.0)
#define eps 1e-6
typedef long long ll;
using namespace std; int n,m,ans,cnt,tot,flag;
bool vis[10];
int dp[300000],mp[15][15],sc[5];
int tri[9][3]=
{
0,1,2,3,4,7,2,4,5,5,6,8,9,10,15,
7,10,11,11,12,16,8,12,13,13,14,17
}; int cal(int s)
{
int i,j,t=0;
for(j=0; j<9; j++)
{
if((s&(1<<tri[j][0]))&&(s&(1<<tri[j][1]))&&(s&(1<<tri[j][2]))) t++;
}
return t;
}
int dfs(int state,int score)
{
if(dp[state]!=-1) return dp[state];
int i,j,t,tst,num,best=0,tmp;
num=9-score;
for(i=0; i<=17; i++)
{
if(state&(1<<i)) continue ;
tst=state|(1<<i);
t=cal(tst);
if(t>num)
{
tmp=t-num+dfs(tst,score-(t-num));
best=max(best,tmp);
}
else
{
tmp=score-dfs(tst,score);
best=max(best,tmp);
}
}
dp[state]=best;
return best;
}
int main()
{
int i,j,t,test=0;
mp[1][2]=0;mp[1][3]=1;mp[2][3]=2;mp[2][4]=3;mp[2][5]=4;mp[3][5]=5;
mp[3][6]=6;mp[4][5]=7;mp[5][6]=8;mp[4][7]=9;mp[4][8]=10;mp[5][8]=11;
mp[5][9]=12;mp[6][9]=13;mp[6][10]=14;mp[7][8]=15;mp[8][9]=16;mp[9][10]=17;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
tot=0;
int x,y,z,turn=0,num=0;
sc[0]=sc[1]=0;
memset(vis,0,sizeof(vis));
for(i=1; i<=n; i++)
{
scanf("%d%d",&x,&y);
z=mp[x][y];
tot|=(1<<z);
flag=0;
for(j=0; j<9; j++)
{
if(vis[j]) continue ;
if((tot&(1<<tri[j][0]))&&(tot&(1<<tri[j][1]))&&(tot&(1<<tri[j][2])))
{
vis[j]=1;
num++;
flag=1;
sc[turn]++;
}
}
if(!flag) turn^=1;
}
memset(dp,-1,sizeof(dp));
z=dfs(tot,9-num);
sc[turn]+=z;
sc[turn^1]+=(9-num-z);
if(sc[0]>sc[1]) printf("Game %d: A wins.\n",++test);
else printf("Game %d: B wins.\n",++test);
}
return 0;
}

poj 1085 Triangle War (状压+记忆化搜索)的更多相关文章

  1. Luogu P2831 愤怒的小鸟(状压+记忆化搜索)

    P2831 愤怒的小鸟 题意 题目描述 Kiana最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于\((0,0)\)处,每次Kiana可以用它向第一象限发射 ...

  2. poj 1085 Triangle War 博弈论+记忆化搜索

    思路:总共有18条边,9个三角形. 极大极小化搜索+剪枝比较慢,所以用记忆化搜索!! 用state存放当前的加边后的状态,并判断是否构成三角形,找出最优解. 代码如下: #include<ios ...

  3. POJ 1191 棋盘分割 【DFS记忆化搜索经典】

    题目传送门:http://poj.org/problem?id=1191 棋盘分割 Time Limit: 1000MS   Memory Limit: 10000K Total Submission ...

  4. POJ 1579 Function Run Fun 【记忆化搜索入门】

    题目传送门:http://poj.org/problem?id=1579 Function Run Fun Time Limit: 1000MS   Memory Limit: 10000K Tota ...

  5. (中等) POJ 1054 The Troublesome Frog,记忆化搜索。

    Description In Korea, the naughtiness of the cheonggaeguri, a small frog, is legendary. This is a we ...

  6. POJ 3249 Test for Job (记忆化搜索)

    Test for Job Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 11830   Accepted: 2814 Des ...

  7. HDU 2517 / POJ 1191 棋盘分割 区间DP / 记忆化搜索

    题目链接: 黑书 P116 HDU 2157 棋盘分割 POJ 1191 棋盘分割 分析:  枚举所有可能的切割方法. 但如果用递归的方法要加上记忆搜索, 不能会超时... 代码: #include& ...

  8. poj 1088 滑雪(区间dp+记忆化搜索)

    题目链接:http://poj.org/problem?id=1088 思路分析: 1>状态定义:状态dp[i][j]表示在位置map[i][j]可以滑雪的最长区域长度: 2>状态转移方程 ...

  9. POJ 1088: 滑雪(经典 DP+记忆化搜索)

    滑雪 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 74996   Accepted: 27818 Description ...

随机推荐

  1. 【python之路面向对象】初级篇

    概述 面向过程:根据业务逻辑从上到下写垒代码 函数式:将某功能代码封装到函数中,日后便无需重复编写,仅调用函数即可 面向对象:对函数进行分类和封装,让开发“更快更好更强...” 面向过程编程最易被初学 ...

  2. Java问题解读系列之基础相关---含继承时的执行顺序

    今天来研究一下含继承.静态成员.非静态成员时Java程序的执行顺序: 一.不含继承,含有静态变量.静态代码块 创建一个子类,该类包含静态变量.静态代码块.静态方法.构造方法 /** * @create ...

  3. mysql 无法存储joda time的datetime类型

    com.mysql.jdbc.MysqlDataTruncation: Data truncation: Incorrect datetime value: '\xAC\xED\x00\x05sr\x ...

  4. free内存监控

    语 法: free [-bkmotV][-s <间隔秒数>] 补充说明:free指令会显示内存的使用情况,包括实体内存,虚拟的交换文件内存,共享内存区段,以及系统核心使用的缓冲区等. 参 ...

  5. 【Python之路22】冒泡排序算法

    1.变量互换 a = 123 b = 456 temp = a a = b b = temp python比较简单的变量互换: a = 123 b = 456 a,b = b,a print(a,b) ...

  6. 修改Eclipse自动换行长度

    使用Ctrl+Shift+F自动格式化代码的时候,有时候折行太多反而让代码看起来更乱,不容易阅读. 解决办法: Window-->Preferences-->Java-->Code ...

  7. 来实现一个缩水版Vuex

    对 Vuex 源码进行浓缩,DIY 一个小型 Vuex 功能如下 通过 $store.commit 改变 $store.state 实现 strict model 源码约70行左右比较好理解,下面讲解 ...

  8. vue移动端项目

    用vue mint-ui  jquery-weui写了一个移动端demo 技术栈 vue2.0 vue-router axios mint-ui jquery-weui webpack 页面截图 最后 ...

  9. SurfaceFlinger与Surface概述

    基本原理: SF一个Client对应一个app中的SurfaceComposerClient, 分别是Binder的n端和b端,主要用来CreateSurface 一个app中有多个Activity, ...

  10. C++的替代运算标记符

    标记符and, and_eq, bitand, bitor, compl, not, not_eq, or, or_eq, xor, xor_eq, <%, %>, <: 和 :&g ...