Note that this is the first problem of the two similar problems. You can hack this problem only if you solve both problems.

You are given a tree with nn nodes. In the beginning, 00 is written on all edges. In one operation, you can choose any 22 distinct leaves uu, vvand any real number xx and add xx to values written on all edges on the simple path between uu and vv.

For example, on the picture below you can see the result of applying two operations to the graph: adding 22 on the path from 77 to 66, and then adding −0.5−0.5 on the path from 44 to 55.

Is it true that for any configuration of real numbers written on edges, we can achieve it with a finite number of operations?

Leaf is a node of a tree of degree 11. Simple path is a path that doesn't contain any node twice.

Input

The first line contains a single integer nn (2≤n≤1052≤n≤105) — the number of nodes.

Each of the next n−1n−1 lines contains two integers uu and vv (1≤u,v≤n1≤u,v≤n, u≠vu≠v), meaning that there is an edge between nodes uu and vv. It is guaranteed that these edges form a tree.

Output

If there is a configuration of real numbers written on edges of the tree that we can't achieve by performing the operations, output "NO".

Otherwise, output "YES".

You can print each letter in any case (upper or lower).

Examples
input

Copy
2
1 2
output

Copy
YES
input

Copy
3
1 2
2 3
output

Copy
NO
 
 
 
题意:
给定一棵树,树上的边权初始为0,你可以在任意两个叶子之间的简单路径上的边上加上一个权值实数x。
问:能否在有限次数的操作内,得到边权任意组合的树
 
思路:
假设有叶子节点L1,L2,L3,并且有L1的邻居U,L1,L2和L3在以U为根节点的树的不同子树上。
现在想要U到L1边权为x,而其他边权不变。那么只需要L1-L2的路径上加上X/2,L1-L3的路径上加上X/2,L2-L3上的路径减去想x/2 即可。
显而易见要完成这个操作,U的度数要大于等于3
所以只需要判断有没有度数为2的点行了。
 
#include<iostream>
#include<algorithm>
#include<vector>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<ctime> #define fuck(x) cout<<#x<<" = "<<x<<endl;
#define debug(a, x) cout<<#a<<"["<<x<<"] = "<<a[x]<<endl;
#define ls (t<<1)
#define rs ((t<<1)|1)
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = ;
const int maxm = ;
const int inf = 0x3f3f3f3f;
const ll Inf = ;
const int mod = ;
const double eps = 1e-;
const double pi = acos(-); int n;
int num[maxn]; int main() { scanf("%d",&n); for(int i=;i<n;i++){
int x;
scanf("%d",&x);
num[x]++;
scanf("%d",&x);
num[x]++;
}
bool flag = true;
for(int i=;i<maxn;i++){
if(num[i]==){
flag=false;
}
} if(flag){
printf("YES\n");
}
else{
printf("NO\n");
} return ;
}

CodeForce - 1189 D1. Add on a Tree (思维题)的更多相关文章

  1. codeforce 266c Below the Diagonal 矩阵变换 (思维题)

    C. Below the Diagonal You are given a square matrix consisting of n rows and n columns. We assume th ...

  2. D. Minimum Diameter Tree 思维+猜结论

    D. Minimum Diameter Tree 思维+猜结论 题意 给出一颗树 和一个值v 把该值任意分配到任意边上 使得\(\sum\limits_{i,j}p_{ij}=v\) 使得 这颗树任意 ...

  3. Codeforces Add on a Tree

    Add on a Tree time limit per test 1 second memory limit per test 256 megabytes input standard input ...

  4. 思维题--code forces round# 551 div.2

    思维题--code forces round# 551 div.2 题目 D. Serval and Rooted Tree time limit per test 2 seconds memory ...

  5. UVA.699 The Falling Leaves (二叉树 思维题)

    UVA.699 The Falling Leaves (二叉树 思维题) 题意分析 理解题意花了好半天,其实就是求建完树后再一条竖线上的所有节点的权值之和,如果按照普通的建树然后在计算的方法,是不方便 ...

  6. UVA.679 Dropping Balls (二叉树 思维题)

    UVA.679 Dropping Balls (二叉树 思维题) 题意分析 给出深度为D的完全二叉树,按照以下规则,求第I个小球下落在那个叶子节点. 1. 默认所有节点的开关均处于关闭状态. 2. 若 ...

  7. hdu5325 树的思维题

    pid=5325">http://acm.hdu.edu.cn/showproblem.php? pid=5325 Problem Description Bobo has a tre ...

  8. ACM思维题训练 Section A

    题目地址: 选题为入门的Codeforce div2/div1的C题和D题. 题解: A:CF思维联系–CodeForces -214C (拓扑排序+思维+贪心) B:CF–思维练习-- CodeFo ...

  9. zoj 3778 Talented Chef(思维题)

    题目 题意:一个人可以在一分钟同时进行m道菜的一个步骤,共有n道菜,每道菜各有xi个步骤,求做完的最短时间. 思路:一道很水的思维题, 根本不需要去 考虑模拟过程 以及先做那道菜(比赛的时候就是这么考 ...

随机推荐

  1. [idea]idea配置Jrebel 标签: ideatomcatjrebel 2017-03-14 09:23 547人阅读 评论(21

    上篇博客讲了如何为idea设置tomcat,这篇博客要给大家推荐Jrebel,其实eclipse上也可以配置Jrebel,但是在使用eclipse的时候并没有发现这些东西,还是习惯使然,对一个比较熟悉 ...

  2. PHPCMS快速建站系列之标签调用出错

    {pc:content action="position" posid="24" order="listorder ASC" thumb=& ...

  3. 【JZOJ4884】【NOIP2016提高A组集训第12场11.10】图的半径

    题目描述 mhy12345学习了树的直径,于是开始研究图的半径,具体来说,我们需要在图中选定一个地方作为中心,其中这个中心有可能在路径上. 而这个中心的选址需要能够使得所有节点达到这个中心的最短路里面 ...

  4. 【时光回溯】【JZOJ3571】【GDKOI2014】内存分配

    题目描述 输入 输出 输出m行,每行一个整数,代表输入中每次程序变化后系统所需要的空闲内存单位数. 样例输入 2 3 1 4 1 4 2 2 1 2 1 1 1 1 1 样例输出 2 3 1 数据范围 ...

  5. 小爬爬2:fiddler安装和了解fiddler

    1.解压安装就可以了 fiddler优点:抓取移动和PC机器的请求 2.首先进行证书的配置 如果不配置只能抓取http的请求,https不能抓取. 先选择,第一个"清空所有内容" ...

  6. poj 3280【区间dp】

    poj 3280 题意:给定一个字符串和每个字符删去和增加的代价,求使字符串变成回文串操作所需的最小代价. 题解:哇!开心!终于亲自做对了!做完这两题这个就回了.uva10739  uva 10453 ...

  7. Python学习之路15☞socket编程

    一 客户端/服务器架构 即C/S架构,包括 1.硬件C/S架构(打印机) 2.软件C/S架构(web服务) C/S架构与socket的关系: 我们学习socket就是为了完成C/S架构的开发 二 os ...

  8. 【转载】STL 的 erase() 陷阱-迭代器失效总结

    下面材料整理自Internet&著作. TL中的容器按存储方式分为两类,一类是按以数组形式存储的容器(如:vector .deque):另一类是以不连续的节点形式存储的容器(如:list.se ...

  9. Libevent:3创建event_base

    在使用Libevent函数之前,需要分配一个或多个event_base结构.每一个event_base都持有一个events的集合,并且可以检测那些events是激活的. 如果设置event_base ...

  10. __defineGetter__和__defineSetter__在日期中的应用

    日期函数每次取年月日都要调用Date的函数,有点麻烦,通过__defineGetter__可以处理一下,就能通过Date的实例对象直接获取年月日,例如 date.year获取日期对象date的年份.月 ...