明白之后 5min 就写好了…自闭…

这题的题意是问你 \([L,R]\) 区间的数字不能构成的数字的最小值…

首先考虑 如果 \([1,x]\) 可以被表示

那么加入一个 \(a_i\) 显然 \([1,x+a_i]\) 都可以被表示

有什么好办法呢

当然有 \(O(q * \sum_{i\in[L,R]}{a_i}*[R-L+1])\)

(雾)

区间求和问题啥的考虑主席树,首先我不会证明复杂度,是因为我菜/kk

还是一样的套路 讨论 \([1,x]\)

对于区间求 \(\sum_{i\in[L,R]}[a_i<=ans]\)

\([ans\)初值是1\(]\)

显然此时 \([1,ans-1]\) 都可以表示出来 所以考虑扩大区间使得这个\(res = \sum_{i\in[L,R]}[a_i<=ans]\)

如果值比 \(ans\) 小肯定是不可以构成 \(ans+1\) 的 所以无需扩展…

#include<bits/stdc++.h>

using ll = long long ;
using namespace std ; int read() {
int x = 0 , f = 1 ; char c = getchar() ;
while(c < '0' || c > '9') { if(c == '-') f = -1 ; c = getchar() ; }
while(c >= '0' && c <= '9') { x = (x << 1) + (x << 3) + (c & 15) ; c = getchar() ; }
return x * f ;
} const int N = 1e5 + 10 ;
const int MAXN = N << 5 ;
const int INF = 1e9 ;
int n , a[N] , rt[N] , ls[MAXN] , rs[MAXN] , sum[MAXN] , cnt = 0 ;
void upd(int pre , int & o , int l , int r , int pos , int val) {
ls[o = ++ cnt] = ls[pre] ; rs[o] = rs[pre] ; sum[o] = sum[pre] + val ;
if(l == r) return ; int mid = l + r >> 1 ;
if(pos <= mid) upd(ls[pre] , ls[o] , l , mid , pos , val) ;
else upd(rs[pre] , rs[o] , mid + 1 , r , pos , val) ;
}
int query(int a , int b , int l , int r , int L , int R) {
if(a <= l && r <= b) return (sum[R] - sum[L]) ;
int mid = l + r >> 1 , ans = 0 ;
if(a <= mid) ans += query(a , b , l , mid , ls[L] , ls[R]) ;
if(b > mid) ans += query(a , b , mid + 1 , r , rs[L] , rs[R]) ;
return ans ;
}
signed main() {
n = read() ;
for(int i = 1 ; i <= n ; i ++) a[i] = read() ;
for(int i = 1 ; i <= n ; i ++) upd(rt[i - 1] , rt[i] , 1 , INF , a[i] , a[i]) ;
int m = read() ;
while(m --) {
int L = read() , R = read() , ans = 1 ;
while(1) {
int res = query(1 , ans , 1 , INF , rt[L - 1] , rt[R]) ;
if(res >= ans) ans = res + 1 ;
else break ;
}
printf("%d\n" , ans) ;
}
return 0 ;
}

[[FJOI2016]神秘数][主席树]的更多相关文章

  1. P4587 [FJOI2016]神秘数(主席树)

    题意:给出1e5个数 查询l,r区间内第一个不能被表示的数 比如1,2,4可以用子集的和表示出[1,7] 所以第一个不能被表示的是8 题解:先考虑暴力的做法 把这个区间内的数字按从小到大排序后 从前往 ...

  2. LUOGU P4587 [FJOI2016]神秘数(主席树)

    传送门 解题思路 如果区间内没有\(1\),那么答案就为\(1\),从这一点继续归纳.如果区间内有\(x\)个\(1\),设区间内\([2,x+1]\)的和为\(sum\),如果\(sum=0\),那 ...

  3. BZOJ 4408: [Fjoi 2016]神秘数 [主席树]

    传送门 题意: 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},8无法表示为集合S的子集的和,故集合S的神秘数为8.现给定n个正整数a[1]. ...

  4. BZOJ4408&4299[Fjoi 2016]神秘数——主席树

    题目描述 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},1 = 1 2 = 1+1 3 = 1+1+1 4 = 4 5 = 4+1 6 = ...

  5. 【bzoj4408】[Fjoi 2016]神秘数 主席树

    题目描述 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},1 = 12 = 1+13 = 1+1+14 = 45 = 4+16 = 4+1+1 ...

  6. BZOJ 4408: [Fjoi 2016]神秘数 主席树 + 神题

    Code: #include<bits/stdc++.h> #define lson ls[x] #define mid ((l+r)>>1) #define rson rs[ ...

  7. 【BZOJ4408】[FJOI2016]神秘数(主席树)

    [BZOJ4408][FJOI2016]神秘数(主席树) 题面 BZOJ 洛谷 题解 考虑只有一次询问. 我们把所有数排个序,假设当前可以表示出的最大数是\(x\). 起始\(x=0\). 依次考虑接 ...

  8. (bzoj4408)[FJOI2016]神秘数(可持久化线段树)

    (bzoj4408)[FJOI2016]神秘数(可持久化线段树) bzoj luogu 对于一个区间的数,排序之后从左到右每一个数扫 如果扫到某个数a时已经证明了前面的数能表示[1,x],那么分情况: ...

  9. 【LG4587】[FJOI2016]神秘数

    [LG4587][FJOI2016]神秘数 题面 洛谷 题解 首先我们想一想暴力怎么做 对于一段区间\([l,r]\) 我们先将它之间的数升序排序 从左往右扫, 设当前我们可以表示出的数为\([1,x ...

随机推荐

  1. 2018icpc南京网络赛-L Magical Girl Haze (分层图最短路)

    题意: 有向图,可以把k条路的长度变为0,求1到n的最短路 思路: 将图复制k份,一共k+1层图,对于每一条i→j,都连一条低层的i→高层的j,并且权值为0 即对每一对<i,j,w>,都加 ...

  2. python之reload用法

    一.python2和python3的区别 python2中可以直接使用reload().python3中需要从库中导入,有两种方法: >>> from imp import relo ...

  3. why NW NMM backup sqlserver failed and how to solve it

    A NW NMM backup sqlserver failed. wow , I realze that maybe I put too many database backup together ...

  4. JUC中的锁

    ★.不同角度的锁的理解: #1.公平锁.非公平锁 公平锁:eg: ReentrantLock 关键词:先来先服务. 加锁前检查是否有排队等锁的线程,若有,当前线程参与排队,先排的线程优先获取锁.相对没 ...

  5. Go语言实现:【剑指offer】表示数值的字符串

    该题目来源于牛客网<剑指offer>专题. 请实现一个函数用来判断字符串是否表示数值(包括整数和小数).例如,字符串"+100","5e2",&qu ...

  6. Go语言实现:【剑指offer】第一个只出现一次的字符位置

    该题目来源于牛客网<剑指offer>专题. 在一个字符串(0<=字符串长度<=10000,全部由字母组成)中找到第一个只出现一次的字符,并返回它的位置, 如果没有则返回 -1( ...

  7. Apache开启GZIP 压缩网页

    首先我们先了解Apache Gzip的相关资料. 一.gzip介绍 Gzip是一种流行的文件压缩算法,现在的应用十分广泛,尤其是在Linux平台.当应用Gzip压缩到一个纯文本文件时,效果是非常明显的 ...

  8. 珠峰-6-node

    1. js主线程是单线程的. 2. path.resolve 传('/')解析出一个绝对路径.

  9. 显示二维码-智能TFT模块

    应用范例: 使用 TOPWAY Smart LCD (HMT050CC-C) 显示二维码 第一步 建立工程 ① 开 Editor 软件, 点击菜单栏建立新工程File --> New Proje ...

  10. 正规式与正规集,DFA与NFA

    词法分析器的设计 词法分析器的功能:输入源程序.输出单词符号 词法分析器的设计:给出程序设计语言的单词规范--单词表, 对照单词表设计识别该语言所有单词的状态转换图, 根据状态转换图编写词法分析程序 ...