题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1067

1067 - Combinations

Given n different objects, you want to take k of them. How many ways to can do it?

For example, say there are 4 items; you want to take 2 of them. So, you can do it 6 ways.

Take 1, 2

Take 1, 3

Take 1, 4

Take 2, 3

Take 2, 4

Take 3, 4

Input

Input starts with an integer T (≤ 2000), denoting the number of test cases.

Each test case contains two integers n (1 ≤ n ≤ 106), k (0 ≤ k ≤ n).

Output

For each case, output the case number and the desired value. Since the result can be very large, you have to print the result modulo 1000003.

Sample Input

Output for Sample Input

3

4 2

5 0

6 4

Case 1: 6

Case 2: 1

Case 3: 15

分析:

时间只有2秒,T组测试数据加上n的106达到了109递推肯定超时,那么考虑组合公式,C(n,k)=n!/(k!*(n-k)!);先打一个阶乘的表(当然要取模,只有106),然后就是这个除法取模的问题,当然是求逆元,(a/b)%mod=a*(b对mod 的逆元);求逆元可以用扩欧和费马小定理。

费马小定理的使用条件mod必须为素数。

代码:

#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<queue>
#include<stack>
using namespace std;
#define N 1000009
#define mod 1000003
#define LL long long

LL fact[N];

void init()
{
fact[0] = fact[1] = 1;

for(int i = 2; i < N; i++)
fact[i] = (fact[i-1] * i) % mod;
}
/*LL niyuan(int a, int p)
{
LL ans = 1;

if(p == 0)
return 1;

while(p)
{
if(p & 1)
ans = (ans * a) % mod;
a = (a * a) % mod;
p >>= 1;
}
return ans;

}*/

LL niyuan(int a, int b)///就是一个快速幂。
{
if(b == 0)
return 1;

LL x = niyuan(a, b / 2);

LL ans = x * x % mod;

if(b % 2 == 1)
ans = ans * a % mod;

return ans;
}
LL c(int n, int k)
{
LL fm = (fact[k] * fact[n-k]) % mod;///n! * (n-m)!.
LL ans1 = niyuan(fm, mod - 2);///求n!的逆元。

return (ans1 * fact[n]) % mod;///公式(a / b ) % mod = (a * a ^(mod-2) % mod。
}
int main(void)
{
int T, cas;
int n, k;

init();
scanf("%d", &T);
cas = 0;

while(T--)
{
cas++;
scanf("%d%d", &n, &k);
if(2 * k > n)///组合数性质。
k = n - k;

printf("Case %d: %lld\n", cas, c(n, k));

}
return 0;
}

light oj 1067 费马小定理求逆元的更多相关文章

  1. LightOJ 1419 – Necklace Polya计数+费马小定理求逆元

    题意:给你n个珠子可以染成k种颜色,旋转后相同的视为一种,问共有几种情况 思路:开始按照一般的排列组合做发现情况太多且要太多运算,查了下发现此题是组合中Polya定理模板题- 学的浅只能大致一说公式S ...

  2. 第十四届华中科技大学程序设计竞赛 B Beautiful Trees Cutting【组合数学/费马小定理求逆元/快速幂】

    链接:https://www.nowcoder.com/acm/contest/106/B 来源:牛客网 题目描述 It's universally acknowledged that there'r ...

  3. UVALive-3722 留个坑,为什么费马小定理求逆元不对??

    #include <iostream> #include <cstdlib> #include <queue> #include <algorithm> ...

  4. hihocoder #1698 假期计划 (排列组合+费马小定理+乘法逆元)

    Description 小Ho未来有一个为期N天的假期,他计划在假期中看A部电影,刷B道编程题.为了劳逸结合,他决定先拿出若干天看电影,再拿出若干天刷题,最后再留若干天看电影.(若干代指大于0)  每 ...

  5. 洛谷 - P1593 - 因子和 - 费马小定理

    类似的因为模数比较小的坑还有卢卡斯定理那道,也是有时候逆元会不存在,因为整除了.使用一些其他方法避免通过逆元. https://www.luogu.org/fe/problem/P1593 有坑.一定 ...

  6. 51nod A 魔法部落(逆元费马小定理)

    A 魔法部落 小Biu所在的部落是一个魔法部落,部落中一共有n+1个人,小Biu是魔法部落中最菜的,所以他的魔力值为1,魔法部落中n个人的魔法值都不相同,第一个人的魔法值是小Biu的3倍,第二个人的魔 ...

  7. 题解 P4071 【[SDOI2016]排列计数】 (费马小定理求组合数 + 错排问题)

    luogu题目传送门! luogu博客通道! 这题要用到错排,先理解一下什么是错排: 问题:有一个数集A,里面有n个元素 a[i].求,如果将其打乱,有多少种方法使得所有第原来的i个数a[i]不在原来 ...

  8. 洛谷P2480 [SDOI2010]古代猪文(费马小定理,卢卡斯定理,中国剩余定理,线性筛)

    洛谷题目传送门 蒟蒻惊叹于一道小小的数论题竟能涉及这么多知识点!不过,掌握了这些知识点,拿下这道题也并非难事. 题意一行就能写下来: 给定\(N,G\),求\(G^{\sum \limits _{d| ...

  9. [CodeVs1515]跳(lucas定理+费马小定理)

    嘿嘿嘿好久没写数学题了,偶尔看到一道写一写... 题目大意:一个(n+1)*(m+1)[0<=n, m<=10^12,n*m<=10^12]的矩阵,C(0,0)=1,C(x,y)=C ...

随机推荐

  1. Java入门 - 语言基础 - 22.异常处理

    原文地址:http://www.work100.net/training/java-exception.html 更多教程:光束云 - 免费课程 异常处理 序号 文内章节 视频 1 概述 2 Exce ...

  2. python接口自动化中,注册接口随机生成手机号码

    如大家所知在注册接口中,手机号参数需要的是未注册的手机号,而在测试用例中,你写入的手机号不一定是未注册的.所以这时需要对注册接口中传入的手机号做处理.下面我就分享一个课程里面学到的一个处理手机号的py ...

  3. [bzoj1297] [洛谷P4159] [SCOI2009] 迷路

    Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...

  4. 「 从0到1学习微服务SpringCloud 」05服务消费者Fegin

    系列文章(更新ing): 「 从0到1学习微服务SpringCloud 」01 一起来学呀! 「 从0到1学习微服务SpringCloud 」02 Eureka服务注册与发现 「 从0到1学习微服务S ...

  5. xhemj资料

    Github https://github.com/xhemj Gitee码云 https://gitee.io/xhemj Cnblogs博客园 https://www.cnblogs.com/xh ...

  6. CQBZOJ 避开怪兽

    题目描述 给出一个N行M列的地图,地图形成一个有N*M个格子的矩阵.地图中的空地用'.'表示.其中某些格子有怪兽,用'+'表示.某人要从起点格子'V'走到终点格子'J',他可以向上.下.左.右四个方向 ...

  7. PairProgramming 个人第三次作业

    Github地址:主仓库 https://github.com/Yanyixiao/PairProgramming.git Partner博客园地址: https://www.cnblogs.com/ ...

  8. php--->php 缓冲区 buffer 原理

    php 缓冲区 buffer 原理 1.缓冲流程 从php脚本echo(print.print_r...)内容之后,是如何显示给用户的呢,下面看看流程 echo.print => php out ...

  9. HTML:一张思维导图搞懂HTML

    HTML常用标签及其用法

  10. 二、Linux系统硬链接和软链接详细介绍与实践

    链接的概念 在linux系统中,链接可分为两种:一种被称为硬链接(Hard LinK),另一种被称为软链接或符号链接(Symbolic Link).在默认不带参数的情况下,执行ln命令创建的链接是硬链 ...