light oj 1067 费马小定理求逆元
题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1067
Given n different objects, you want to take k of them. How many ways to can do it?
For example, say there are 4 items; you want to take 2 of them. So, you can do it 6 ways.
Take 1, 2
Take 1, 3
Take 1, 4
Take 2, 3
Take 2, 4
Take 3, 4
Input
Input starts with an integer T (≤ 2000), denoting the number of test cases.
Each test case contains two integers n (1 ≤ n ≤ 106), k (0 ≤ k ≤ n).
Output
For each case, output the case number and the desired value. Since the result can be very large, you have to print the result modulo 1000003.
Sample Input |
Output for Sample Input |
3 4 2 5 0 6 4 |
Case 1: 6 Case 2: 1 Case 3: 15 |
分析:
时间只有2秒,T组测试数据加上n的106达到了109递推肯定超时,那么考虑组合公式,C(n,k)=n!/(k!*(n-k)!);先打一个阶乘的表(当然要取模,只有106),然后就是这个除法取模的问题,当然是求逆元,(a/b)%mod=a*(b对mod 的逆元);求逆元可以用扩欧和费马小定理。
费马小定理的使用条件mod必须为素数。
代码:
#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<queue>
#include<stack>
using namespace std;
#define N 1000009
#define mod 1000003
#define LL long long
LL fact[N];
void init()
{
fact[0] = fact[1] = 1;
for(int i = 2; i < N; i++)
fact[i] = (fact[i-1] * i) % mod;
}
/*LL niyuan(int a, int p)
{
LL ans = 1;
if(p == 0)
return 1;
while(p)
{
if(p & 1)
ans = (ans * a) % mod;
a = (a * a) % mod;
p >>= 1;
}
return ans;
}*/
LL niyuan(int a, int b)///就是一个快速幂。
{
if(b == 0)
return 1;
LL x = niyuan(a, b / 2);
LL ans = x * x % mod;
if(b % 2 == 1)
ans = ans * a % mod;
return ans;
}
LL c(int n, int k)
{
LL fm = (fact[k] * fact[n-k]) % mod;///n! * (n-m)!.
LL ans1 = niyuan(fm, mod - 2);///求n!的逆元。
return (ans1 * fact[n]) % mod;///公式(a / b ) % mod = (a * a ^(mod-2) % mod。
}
int main(void)
{
int T, cas;
int n, k;
init();
scanf("%d", &T);
cas = 0;
while(T--)
{
cas++;
scanf("%d%d", &n, &k);
if(2 * k > n)///组合数性质。
k = n - k;
printf("Case %d: %lld\n", cas, c(n, k));
}
return 0;
}
light oj 1067 费马小定理求逆元的更多相关文章
- LightOJ 1419 – Necklace Polya计数+费马小定理求逆元
题意:给你n个珠子可以染成k种颜色,旋转后相同的视为一种,问共有几种情况 思路:开始按照一般的排列组合做发现情况太多且要太多运算,查了下发现此题是组合中Polya定理模板题- 学的浅只能大致一说公式S ...
- 第十四届华中科技大学程序设计竞赛 B Beautiful Trees Cutting【组合数学/费马小定理求逆元/快速幂】
链接:https://www.nowcoder.com/acm/contest/106/B 来源:牛客网 题目描述 It's universally acknowledged that there'r ...
- UVALive-3722 留个坑,为什么费马小定理求逆元不对??
#include <iostream> #include <cstdlib> #include <queue> #include <algorithm> ...
- hihocoder #1698 假期计划 (排列组合+费马小定理+乘法逆元)
Description 小Ho未来有一个为期N天的假期,他计划在假期中看A部电影,刷B道编程题.为了劳逸结合,他决定先拿出若干天看电影,再拿出若干天刷题,最后再留若干天看电影.(若干代指大于0) 每 ...
- 洛谷 - P1593 - 因子和 - 费马小定理
类似的因为模数比较小的坑还有卢卡斯定理那道,也是有时候逆元会不存在,因为整除了.使用一些其他方法避免通过逆元. https://www.luogu.org/fe/problem/P1593 有坑.一定 ...
- 51nod A 魔法部落(逆元费马小定理)
A 魔法部落 小Biu所在的部落是一个魔法部落,部落中一共有n+1个人,小Biu是魔法部落中最菜的,所以他的魔力值为1,魔法部落中n个人的魔法值都不相同,第一个人的魔法值是小Biu的3倍,第二个人的魔 ...
- 题解 P4071 【[SDOI2016]排列计数】 (费马小定理求组合数 + 错排问题)
luogu题目传送门! luogu博客通道! 这题要用到错排,先理解一下什么是错排: 问题:有一个数集A,里面有n个元素 a[i].求,如果将其打乱,有多少种方法使得所有第原来的i个数a[i]不在原来 ...
- 洛谷P2480 [SDOI2010]古代猪文(费马小定理,卢卡斯定理,中国剩余定理,线性筛)
洛谷题目传送门 蒟蒻惊叹于一道小小的数论题竟能涉及这么多知识点!不过,掌握了这些知识点,拿下这道题也并非难事. 题意一行就能写下来: 给定\(N,G\),求\(G^{\sum \limits _{d| ...
- [CodeVs1515]跳(lucas定理+费马小定理)
嘿嘿嘿好久没写数学题了,偶尔看到一道写一写... 题目大意:一个(n+1)*(m+1)[0<=n, m<=10^12,n*m<=10^12]的矩阵,C(0,0)=1,C(x,y)=C ...
随机推荐
- Java入门 - 语言基础 - 22.异常处理
原文地址:http://www.work100.net/training/java-exception.html 更多教程:光束云 - 免费课程 异常处理 序号 文内章节 视频 1 概述 2 Exce ...
- python接口自动化中,注册接口随机生成手机号码
如大家所知在注册接口中,手机号参数需要的是未注册的手机号,而在测试用例中,你写入的手机号不一定是未注册的.所以这时需要对注册接口中传入的手机号做处理.下面我就分享一个课程里面学到的一个处理手机号的py ...
- [bzoj1297] [洛谷P4159] [SCOI2009] 迷路
Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...
- 「 从0到1学习微服务SpringCloud 」05服务消费者Fegin
系列文章(更新ing): 「 从0到1学习微服务SpringCloud 」01 一起来学呀! 「 从0到1学习微服务SpringCloud 」02 Eureka服务注册与发现 「 从0到1学习微服务S ...
- xhemj资料
Github https://github.com/xhemj Gitee码云 https://gitee.io/xhemj Cnblogs博客园 https://www.cnblogs.com/xh ...
- CQBZOJ 避开怪兽
题目描述 给出一个N行M列的地图,地图形成一个有N*M个格子的矩阵.地图中的空地用'.'表示.其中某些格子有怪兽,用'+'表示.某人要从起点格子'V'走到终点格子'J',他可以向上.下.左.右四个方向 ...
- PairProgramming 个人第三次作业
Github地址:主仓库 https://github.com/Yanyixiao/PairProgramming.git Partner博客园地址: https://www.cnblogs.com/ ...
- php--->php 缓冲区 buffer 原理
php 缓冲区 buffer 原理 1.缓冲流程 从php脚本echo(print.print_r...)内容之后,是如何显示给用户的呢,下面看看流程 echo.print => php out ...
- HTML:一张思维导图搞懂HTML
HTML常用标签及其用法
- 二、Linux系统硬链接和软链接详细介绍与实践
链接的概念 在linux系统中,链接可分为两种:一种被称为硬链接(Hard LinK),另一种被称为软链接或符号链接(Symbolic Link).在默认不带参数的情况下,执行ln命令创建的链接是硬链 ...