第1章 概述

1.1 Flume定义

Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统。Flume基于流式架构,灵活简单。

1.2 Flume组成架构

Flume组成架构如图1-1,图1-2所示:

图1-1 Flume组成架构

图1-2 Flume组成架构详解

下面我们来详细介绍一下Flume架构中的组件。

1.2.1 Agent

Agent是一个JVM进程,它以事件的形式将数据从源头送至目的,是Flume数据传输的基本单元。

Agent主要有3个部分组成,Source、Channel、Sink。

1.2.2 Source

Source是负责接收数据到Flume Agent的组件。Source组件可以处理各种类型、各种格式的日志数据,包括avro、thrift、exec、jms、spooling directory、netcat、sequence generator、syslog、http、legacy。

1.2.3 Channel

Channel是位于Source和Sink之间的缓冲区。因此,Channel允许Source和Sink运作在不同的速率上。Channel是线程安全的,可以同时处理几个Source的写入操作和几个Sink的读取操作。

Flume自带两种Channel:Memory Channel和File Channel。

Memory Channel是内存中的队列。Memory Channel在不需要关心数据丢失的情景下适用。如果需要关心数据丢失,那么Memory Channel就不应该使用,因为程序死亡、机器宕机或者重启都会导致数据丢失。

File Channel将所有事件写到磁盘。因此在程序关闭或机器宕机的情况下不会丢失数据。

1.2.4 Sink

Sink不断地轮询Channel中的事件且批量地移除它们,并将这些事件批量写入到存储或索引系统、或者被发送到另一个Flume Agent。

Sink是完全事务性的。在从Channel批量删除数据之前,每个Sink用Channel启动一个事务。批量事件一旦成功写出到存储系统或下一个Flume Agent,Sink就利用Channel提交事务。事务一旦被提交,该Channel从自己的内部缓冲区删除事件。

Sink组件目的地包括hdfs、logger、avro、thrift、ipc、file、null、HBase、solr、自定义。

1.2.5 Event

传输单元,Flume数据传输的基本单元,以事件的形式将数据从源头送至目的地。

1.3 Flume拓扑结构

Flume的拓扑结构如图1-3、1-4、1-5和1-6所示:

图1-3 Flume Agent连接

图1-4 单source,多channel、sink

图1-5 Flume负载均衡

图1-6 Flume Agent聚合

1.4 Flume Agent内部原理

第2章 快速入门

2.1 Flume安装地址

1) Flume官网地址

http://flume.apache.org/

2)文档查看地址

http://flume.apache.org/FlumeUserGuide.html

3)下载地址

http://archive.apache.org/dist/flume/

2.2 安装部署

1)将apache-flume-1.7.0-bin.tar.gz上传到linux的/opt/software目录下

2)解压apache-flume-1.7.0-bin.tar.gz到/opt/module/目录下

[atguigu@hadoop102 software]$ tar -zxf apache-flume-1.7.0-bin.tar.gz -C /opt/module/

3)修改apache-flume-1.7.0-bin的名称为flume

[atguigu@hadoop102 module]$ mv apache-flume-1.7.0-bin flume

  1. 将flume/conf下的flume-env.sh.template文件修改为flume-env.sh,并配置flume-env.sh文件

    [atguigu@hadoop102 conf]$ mv flume-env.sh.template flume-env.sh

    [atguigu@hadoop102 conf]$ vi flume-env.sh

    export JAVA_HOME=/opt/module/jdk1.8.0_144

    第3章 企业开发案例

    3.1 监控端口数据官方案例

    1)案例需求:首先,Flume监控本机44444端口,然后通过telnet工具向本机44444端口发送消息,最后Flume将监听的数据实时显示在控制台。

    2)需求分析:

    3)实现步骤:

    1.安装telnet工具

    将rpm软件包(xinetd-2.3.14-40.el6.x86_64.rpm、telnet-0.17-48.el6.x86_64.rpm和telnet-server-0.17-48.el6.x86_64.rpm)拷入/opt/software文件夹下面。执行RPM软件包安装命令:

    [atguigu@hadoop102 software]$ sudo rpm -ivh xinetd-2.3.14-40.el6.x86_64.rpm

    [atguigu@hadoop102 software]$ sudo rpm -ivh telnet-0.17-48.el6.x86_64.rpm

    [atguigu@hadoop102 software]$ sudo rpm -ivh telnet-server-0.17-48.el6.x86_64.rpm

    2.判断44444端口是否被占用

    [atguigu@hadoop102 flume-telnet]$ sudo netstat -tunlp | grep 44444

    功能描述:netstat命令是一个监控TCP/IP网络的非常有用的工具,它可以显示路由表、实际的网络连接以及每一个网络接口设备的状态信息。

    基本语法:netstat [选项]

    选项参数:

        -t或--tcp:显示TCP传输协议的连线状况;

    -u或--udp:显示UDP传输协议的连线状况;

        -n或--numeric:直接使用ip地址,而不通过域名服务器;

        -l或--listening:显示监控中的服务器的Socket;

        -p或--programs:显示正在使用Socket的程序识别码和程序名称;

    3.创建Flume Agent配置文件flume-telnet-logger.conf

    在flume目录下创建job文件夹并进入job文件夹。

    [atguigu@hadoop102 flume]$ mkdir job

    [atguigu@hadoop102 flume]$ cd job/

    在job文件夹下创建Flume Agent配置文件flume-telnet-logger.conf。

    [atguigu@hadoop102 job]$ touch flume-telnet-logger.conf

    在flume-telnet-logger.conf文件中添加如下内容。

    [atguigu@hadoop102 job]$ vim flume-telnet-logger.conf

    添加内容如下:

    # Name the components on this agent

    a1.sources = r1

    a1.sinks = k1

    a1.channels = c1

     

    # Describe/configure the source

    a1.sources.r1.type = netcat

    a1.sources.r1.bind = localhost

    a1.sources.r1.port = 44444

     

    # Describe the sink

    a1.sinks.k1.type = logger

     

    # Use a channel which buffers events in memory

    a1.channels.c1.type = memory

    a1.channels.c1.capacity = 1000

    a1.channels.c1.transactionCapacity = 100

     

    # Bind the source and sink to the channel

    a1.sources.r1.channels = c1

    a1.sinks.k1.channel = c1

    注:配置文件来源于官方手册http://flume.apache.org/FlumeUserGuide.html

    4. 先开启flume监听端口

    [atguigu@hadoop102 flume]$ bin/flume-ng agent --conf conf/ --name a1 --conf-file job/flume-telnet-logger.conf -Dflume.root.logger=INFO,console

    参数说明:

        --conf conf/ :表示配置文件存储在conf/目录

        --name a1    :表示给agent起名为a1

        --conf-file job/flume-telnet.conf :flume本次启动读取的配置文件是在job文件夹下的flume-telnet.conf文件。

        -Dflume.root.logger==INFO,console :-D表示flume运行时动态修改flume.root.logger参数属性值,并将控制台日志打印级别设置为INFO级别。日志级别包括:log、info、warn、error。

    5.使用telnet工具向本机的44444端口发送内容

    [atguigu@hadoop102 ~]$ telnet localhost 44444

    6.在Flume监听页面观察接收数据情况

    3.2 实时读取本地文件到HDFS案例

    1)案例需求:实时监控Hive日志,并上传到HDFS中

    2)需求分析:

    3)实现步骤:

  2. Flume要想将数据输出到HDFS,必须持有Hadoop相关jar包

    将commons-configuration-1.6.jar、

    hadoop-auth-2.7.2.jar、

    hadoop-common-2.7.2.jar、

    hadoop-hdfs-2.7.2.jar、

    commons-io-2.4.jar、

    htrace-core-3.1.0-incubating.jar

    拷贝到/opt/module/flume/lib文件夹下。

  3. 创建flume-file-hdfs.conf文件

    创建文件

    [atguigu@hadoop102 job]$ touch flume-file-hdfs.conf

    注:要想读取Linux系统中的文件,就得按照Linux命令的规则执行命令。由于Hive日志在Linux系统中所以读取文件的类型选择:exec即execute执行的意思。表示执行Linux命令来读取文件。

    [atguigu@hadoop102 job]$ vim flume-file-hdfs.conf

    添加如下内容

    # Name the components on this agent

    a2.sources = r2

    a2.sinks = k2

    a2.channels = c2

     

    # Describe/configure the source

    a2.sources.r2.type = exec

    a2.sources.r2.command = tail -F /opt/module/hive/logs/hive.log

    a2.sources.r2.shell = /bin/bash -c

     

    # Describe the sink

    a2.sinks.k2.type = hdfs

    a2.sinks.k2.hdfs.path = hdfs://hadoop102:9000/flume/%Y%m%d/%H

    #上传文件的前缀

    a2.sinks.k2.hdfs.filePrefix = logs-

    #是否按照时间滚动文件夹

    a2.sinks.k2.hdfs.round = true

    #多少时间单位创建一个新的文件夹

    a2.sinks.k2.hdfs.roundValue = 1

    #重新定义时间单位

    a2.sinks.k2.hdfs.roundUnit = hour

    #是否使用本地时间戳

    a2.sinks.k2.hdfs.useLocalTimeStamp = true

    #积攒多少个Event才flush到HDFS一次

    a2.sinks.k2.hdfs.batchSize = 1000

    #设置文件类型,可支持压缩

    a2.sinks.k2.hdfs.fileType = DataStream

    #多久生成一个新的文件

    a2.sinks.k2.hdfs.rollInterval = 600

    #设置每个文件的滚动大小

    a2.sinks.k2.hdfs.rollSize = 134217700

    #文件的滚动与Event数量无关

    a2.sinks.k2.hdfs.rollCount = 0

    #最小冗余数

    a2.sinks.k2.hdfs.minBlockReplicas = 1

     

    # Use a channel which buffers events in memory

    a2.channels.c2.type = memory

    a2.channels.c2.capacity = 1000

    a2.channels.c2.transactionCapacity = 100

     

    # Bind the source and sink to the channel

    a2.sources.r2.channels = c2

    a2.sinks.k2.channel = c2

     

  4. 执行监控配置

    [atguigu@hadoop102 flume]$ bin/flume-ng agent --conf conf/ --name a2 --conf-file job/flume-file-hdfs.conf

    1. 开启Hadoop和Hive并操作Hive产生日志

      [atguigu@hadoop102 hadoop-2.7.2]$ sbin/start-dfs.sh

      [atguigu@hadoop103 hadoop-2.7.2]$ sbin/start-yarn.sh

       

      [atguigu@hadoop102 hive]$ bin/hive

      hive (default)>

    2. 在HDFS上查看文件。

    3.3 实时读取目录文件到HDFS案例

    1)案例需求:使用Flume监听整个目录的文件

    2)需求分析:

    3)实现步骤:

    1.创建配置文件flume-dir-hdfs.conf

    创建一个文件

    [atguigu@hadoop102 job]$ touch flume-dir-hdfs.conf

    打开文件

    [atguigu@hadoop102 job]$ vim flume-dir-hdfs.conf

    添加如下内容

    a3.sources = r3

    a3.sinks = k3

    a3.channels = c3

     

    # Describe/configure the source

    a3.sources.r3.type = spooldir

    a3.sources.r3.spoolDir = /opt/module/flume/upload

    a3.sources.r3.fileSuffix = .COMPLETED

    a3.sources.r3.fileHeader = true

    #忽略所有以.tmp结尾的文件,不上传

    a3.sources.r3.ignorePattern = ([^ ]*\.tmp)

     

    # Describe the sink

    a3.sinks.k3.type = hdfs

    a3.sinks.k3.hdfs.path = hdfs://hadoop102:9000/flume/upload/%Y%m%d/%H

    #上传文件的前缀

    a3.sinks.k3.hdfs.filePrefix = upload-

    #是否按照时间滚动文件夹

    a3.sinks.k3.hdfs.round = true

    #多少时间单位创建一个新的文件夹

    a3.sinks.k3.hdfs.roundValue = 1

    #重新定义时间单位

    a3.sinks.k3.hdfs.roundUnit = hour

    #是否使用本地时间戳

    a3.sinks.k3.hdfs.useLocalTimeStamp = true

    #积攒多少个Event才flush到HDFS一次

    a3.sinks.k3.hdfs.batchSize = 100

    #设置文件类型,可支持压缩

    a3.sinks.k3.hdfs.fileType = DataStream

    #多久生成一个新的文件

    a3.sinks.k3.hdfs.rollInterval = 600

    #设置每个文件的滚动大小大概是128M

    a3.sinks.k3.hdfs.rollSize = 134217700

    #文件的滚动与Event数量无关

    a3.sinks.k3.hdfs.rollCount = 0

    #最小冗余数

    a3.sinks.k3.hdfs.minBlockReplicas = 1

     

    # Use a channel which buffers events in memory

    a3.channels.c3.type = memory

    a3.channels.c3.capacity = 1000

    a3.channels.c3.transactionCapacity = 100

     

    # Bind the source and sink to the channel

    a3.sources.r3.channels = c3

    a3.sinks.k3.channel = c3

     

    2. 启动监控文件夹命令

    [atguigu@hadoop102 flume]$ bin/flume-ng agent --conf conf/ --name a3 --conf-file job/flume-dir-hdfs.conf

    说明: 在使用Spooling Directory Source时

    1. 不要在监控目录中创建并持续修改文件
    2. 上传完成的文件会以.COMPLETED结尾
    3. 被监控文件夹每500毫秒扫描一次文件变动

    3. 向upload文件夹中添加文件

    在/opt/module/flume目录下创建upload文件夹

    [atguigu@hadoop102 flume]$ mkdir upload

    向upload文件夹中添加文件

    [atguigu@hadoop102 upload]$ touch atguigu.txt

    [atguigu@hadoop102 upload]$ touch atguigu.tmp

    [atguigu@hadoop102 upload]$ touch atguigu.log

    4. 查看HDFS上的数据

    5. 等待1s,再次查询upload文件夹

    [atguigu@hadoop102 upload]$ ll

    总用量 0

    -rw-rw-r--. 1 atguigu atguigu 0 5月 20 22:31 atguigu.log.COMPLETED

    -rw-rw-r--. 1 atguigu atguigu 0 5月 20 22:31 atguigu.tmp

    -rw-rw-r--. 1 atguigu atguigu 0 5月 20 22:31 atguigu.txt.COMPLETED

    3.4 单数据源多出口案例(选择器)

        单Source多Channel、Sink如图7-2所示。

        

    图7-2 单Source多Channel、Sink

    1)案例需求:使用Flume-1监控文件变动,Flume-1将变动内容传递给Flume-2,Flume-2负责存储到HDFS。同时Flume-1将变动内容传递给Flume-3,Flume-3负责输出到Local FileSystem。

    2)需求分析:

    3)实现步骤:

    0.准备工作

        在/opt/module/flume/job目录下创建group1文件夹

    [atguigu@hadoop102 job]$ cd group1/

    在/opt/module/datas/目录下创建flume3文件夹

    [atguigu@hadoop102 datas]$ mkdir flume3

    1.创建flume-file-flume.conf

    配置1个接收日志文件的source和两个channel、两个sink,分别输送给flume-flume-hdfs和flume-flume-dir。

    创建配置文件并打开

    [atguigu@hadoop102 group1]$ touch flume-file-flume.conf

    [atguigu@hadoop102 group1]$ vim flume-file-flume.conf

    添加如下内容

    # Name the components on this agent

    a1.sources = r1

    a1.sinks = k1 k2

    a1.channels = c1 c2

    # 将数据流复制给所有channel

    a1.sources.r1.selector.type = replicating

     

    # Describe/configure the source

    a1.sources.r1.type = exec

    a1.sources.r1.command = tail -F /opt/module/hive/logs/hive.log

    a1.sources.r1.shell = /bin/bash -c

     

    # Describe the sink

    a1.sinks.k1.type = avro

    a1.sinks.k1.hostname = hadoop102

    a1.sinks.k1.port =

     

    a1.sinks.k2.type = avro

    a1.sinks.k2.hostname = hadoop102

    a1.sinks.k2.port = 4142

     

    # Describe the channel

    a1.channels.c1.type = memory

    a1.channels.c1.capacity = 1000

    a1.channels.c1.transactionCapacity = 100

     

    a1.channels.c2.type = memory

    a1.channels.c2.capacity = 1000

    a1.channels.c2.transactionCapacity = 100

     

    # Bind the source and sink to the channel

    a1.sources.r1.channels = c1 c2

    a1.sinks.k1.channel = c1

    a1.sinks.k2.channel = c2

    注:Avro是由Hadoop创始人Doug Cutting创建的一种语言无关的数据序列化和RPC框架。

    注:RPC(Remote Procedure Call)—远程过程调用,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议。

    2.创建flume-flume-hdfs.conf

    配置上级Flume输出的Source,输出是到HDFS的Sink。

    创建配置文件并打开

    [atguigu@hadoop102 group1]$ touch flume-flume-hdfs.conf

    [atguigu@hadoop102 group1]$ vim flume-flume-hdfs.conf

    添加如下内容

    # Name the components on this agent

    a2.sources = r1

    a2.sinks = k1

    a2.channels = c1

     

    # Describe/configure the source

    a2.sources.r1.type = avro

    a2.sources.r1.bind = hadoop102

    a2.sources.r1.port = 4141

     

    # Describe the sink

    a2.sinks.k1.type = hdfs

    a2.sinks.k1.hdfs.path = hdfs://hadoop102:9000/flume2/%Y%m%d/%H

    #上传文件的前缀

    a2.sinks.k1.hdfs.filePrefix = flume2-

    #是否按照时间滚动文件夹

    a2.sinks.k1.hdfs.round = true

    #多少时间单位创建一个新的文件夹

    a2.sinks.k1.hdfs.roundValue = 1

    #重新定义时间单位

    a2.sinks.k1.hdfs.roundUnit = hour

    #是否使用本地时间戳

    a2.sinks.k1.hdfs.useLocalTimeStamp = true

    #积攒多少个Event才flush到HDFS一次

    a2.sinks.k1.hdfs.batchSize = 100

    #设置文件类型,可支持压缩

    a2.sinks.k1.hdfs.fileType = DataStream

    #多久生成一个新的文件

    a2.sinks.k1.hdfs.rollInterval =

    #设置每个文件的滚动大小大概是128M

    a2.sinks.k1.hdfs.rollSize = 134217700

    #文件的滚动与Event数量无关

    a2.sinks.k1.hdfs.rollCount = 0

    #最小冗余数

    a2.sinks.k1.hdfs.minBlockReplicas = 1

     

    # Describe the channel

    a2.channels.c1.type = memory

    a2.channels.c1.capacity = 1000

    a2.channels.c1.transactionCapacity = 100

     

    # Bind the source and sink to the channel

    a2.sources.r1.channels = c1

    a2.sinks.k1.channel = c1

    3.创建flume-flume-dir.conf

    配置上级Flume输出的Source,输出是到本地目录的Sink。

    创建配置文件并打开

    [atguigu@hadoop102 group1]$ touch flume-flume-dir.conf

    [atguigu@hadoop102 group1]$ vim flume-flume-dir.conf

    添加如下内容

    # Name the components on this agent

    a3.sources = r1

    a3.sinks = k1

    a3.channels = c2

     

    # Describe/configure the source

    a3.sources.r1.type = avro

    a3.sources.r1.bind = hadoop102

    a3.sources.r1.port = 4142

     

    # Describe the sink

    a3.sinks.k1.type = file_roll

    a3.sinks.k1.sink.directory = /opt/module/datas/flume3

     

    # Describe the channel

    a3.channels.c2.type = memory

    a3.channels.c2.capacity = 1000

    a3.channels.c2.transactionCapacity = 100

     

    # Bind the source and sink to the channel

    a3.sources.r1.channels = c2

    a3.sinks.k1.channel = c2

    提示:输出的本地目录必须是已经存在的目录,如果该目录不存在,并不会创建新的目录。

    4.执行配置文件

    分别开启对应配置文件:flume-flume-dir,flume-flume-hdfs,flume-file-flume。

    [atguigu@hadoop102 flume]$ bin/flume-ng agent --conf conf/ --name a3 --conf-file job/group1/flume-flume-dir.conf

     

    [atguigu@hadoop102 flume]$ bin/flume-ng agent --conf conf/ --name a2 --conf-file job/group1/flume-flume-hdfs.conf

     

    [atguigu@hadoop102 flume]$ bin/flume-ng agent --conf conf/ --name a1 --conf-file job/group1/flume-file-flume.conf

    5.启动Hadoop和Hive

    [atguigu@hadoop102 hadoop-2.7.2]$ sbin/start-dfs.sh

    [atguigu@hadoop103 hadoop-2.7.2]$ sbin/start-yarn.sh

     

    [atguigu@hadoop102 hive]$ bin/hive

    hive (default)>

    6.检查HDFS上数据

    7检查/opt/module/datas/flume3目录中数据

    [atguigu@hadoop102 flume3]$ ll

    总用量 8

    -rw-rw-r--. 1 atguigu atguigu 5942 5月 22 00:09 1526918887550-3

    3.5 单数据源多出口案例(Sink组)

    单Source、Channel多Sink(负载均衡)如图7-3所示。

        

    图7-3 单Source、Channel多Sink

    1)案例需求:使用Flume-1监控文件变动,Flume-1将变动内容传递给Flume-2,Flume-2负责存储到HDFS。同时Flume-1将变动内容传递给Flume-3,Flume-3也负责存储到HDFS

    2)需求分析:

    3)实现步骤:

    0.准备工作

        在/opt/module/flume/job目录下创建group2文件夹

    [atguigu@hadoop102 job]$ cd group2/

    1.创建flume-netcat-flume.conf

    配置1个接收日志文件的source和1个channel、两个sink,分别输送给flume-flume-console1和flume-flume-console2。

    创建配置文件并打开

    [atguigu@hadoop102 group2]$ touch flume-netcat-flume.conf

    [atguigu@hadoop102 group2]$ vim flume-netcat-flume.conf

    添加如下内容

    # Name the components on this agent

    a1.sources = r1

    a1.channels = c1

    a1.sinkgroups = g1

    a1.sinks = k1 k2

     

    # Describe/configure the source

    a1.sources.r1.type = netcat

    a1.sources.r1.bind = localhost

    a1.sources.r1.port = 44444

     

    a1.sinkgroups.g1.processor.type = load_balance

    a1.sinkgroups.g1.processor.backoff = true

    a1.sinkgroups.g1.processor.selector = round_robin

    a1.sinkgroups.g1.processor.selector.maxTimeOut=10000

     

    # Describe the sink

    a1.sinks.k1.type = avro

    a1.sinks.k1.hostname = hadoop102

    a1.sinks.k1.port = 4141

     

    a1.sinks.k2.type = avro

    a1.sinks.k2.hostname = hadoop102

    a1.sinks.k2.port = 4142

     

    # Describe the channel

    a1.channels.c1.type = memory

    a1.channels.c1.capacity = 1000

    a1.channels.c1.transactionCapacity = 100

     

    # Bind the source and sink to the channel

    a1.sources.r1.channels = c1

    a1.sinkgroups.g1.sinks = k1 k2

    a1.sinks.k1.channel = c1

    a1.sinks.k2.channel = c1

    注:Avro是由Hadoop创始人Doug Cutting创建的一种语言无关的数据序列化和RPC框架。

    注:RPC(Remote Procedure Call)—远程过程调用,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议。

    2.创建flume-flume-console1.conf

    配置上级Flume输出的Source,输出是到本地控制台。

    创建配置文件并打开

    [atguigu@hadoop102 group2]$ touch flume-flume-console1.conf

    [atguigu@hadoop102 group2]$ vim flume-flume-console1.conf

    添加如下内容

    # Name the components on this agent

    a2.sources = r1

    a2.sinks = k1

    a2.channels = c1

     

    # Describe/configure the source

    a2.sources.r1.type = avro

    a2.sources.r1.bind = hadoop102

    a2.sources.r1.port = 4141

     

    # Describe the sink

    a2.sinks.k1.type = logger

     

    # Describe the channel

    a2.channels.c1.type = memory

    a2.channels.c1.capacity = 1000

    a2.channels.c1.transactionCapacity = 100

     

    # Bind the source and sink to the channel

    a2.sources.r1.channels = c1

    a2.sinks.k1.channel = c1

    3.创建flume-flume-console2.conf

    配置上级Flume输出的Source,输出是到本地控制台。

    创建配置文件并打开

    [atguigu@hadoop102 group2]$ touch flume-flume-console2.conf

    [atguigu@hadoop102 group2]$ vim flume-flume-console2.conf

    添加如下内容

    # Name the components on this agent

    a3.sources = r1

    a3.sinks = k1

    a3.channels = c2

     

    # Describe/configure the source

    a3.sources.r1.type = avro

    a3.sources.r1.bind = hadoop102

    a3.sources.r1.port = 4142

     

    # Describe the sink

    a3.sinks.k1.type = logger

     

    # Describe the channel

    a3.channels.c2.type = memory

    a3.channels.c2.capacity = 1000

    a3.channels.c2.transactionCapacity = 100

     

    # Bind the source and sink to the channel

    a3.sources.r1.channels = c2

    a3.sinks.k1.channel = c2

    4.执行配置文件

    分别开启对应配置文件:flume-flume-console2,flume-flume-console1,flume-netcat-flume。

    [atguigu@hadoop102 flume]$ bin/flume-ng agent --conf conf/ --name a3 --conf-file job/group2/flume-flume-console2.conf -Dflume.root.logger=INFO,console

     

    [atguigu@hadoop102 flume]$ bin/flume-ng agent --conf conf/ --name a2 --conf-file job/group2/flume-flume-console1.conf -Dflume.root.logger=INFO,console

     

    [atguigu@hadoop102 flume]$ bin/flume-ng agent --conf conf/ --name a1 --conf-file job/group2/flume-netcat-flume.conf

    5. 使用telnet工具向本机的44444端口发送内容

    $ telnet localhost 44444

    6. 查看Flume2及Flume3的控制台打印日志

    3.6 多数据源汇总案例

        多Source汇总数据到单Flume如图7-4所示。

    图7-4多Flume汇总数据到单Flume

    1. 案例需求:

      hadoop103上的Flume-1监控文件/opt/module/group.log,

      hadoop102上的Flume-2监控某一个端口的数据流,

      Flume-1与Flume-2将数据发送给hadoop104上的Flume-3,Flume-3将最终数据打印到控制台。    

    2)需求分析:

    3)实现步骤:

    0.准备工作

    分发Flume

    [atguigu@hadoop102 module]$ xsync flume

        在hadoop102、hadoop103以及hadoop104的/opt/module/flume/job目录下创建一个group3文件夹。

    [atguigu@hadoop102 job]$ mkdir group3

    [atguigu@hadoop103 job]$ mkdir group3

    [atguigu@hadoop104 job]$ mkdir group3

    1.创建flume1-logger-flume.conf

    配置Source用于监控hive.log文件,配置Sink输出数据到下一级Flume。

    在hadoop103上创建配置文件并打开

    [atguigu@hadoop103 group3]$ touch flume1-logger-flume.conf

    [atguigu@hadoop103 group3]$ vim flume1-logger-flume.conf

    添加如下内容

    # Name the components on this agent

    a1.sources = r1

    a1.sinks = k1

    a1.channels = c1

     

    # Describe/configure the source

    a1.sources.r1.type = exec

    a1.sources.r1.command = tail -F /opt/module/group.log

    a1.sources.r1.shell = /bin/bash -c

     

    # Describe the sink

    a1.sinks.k1.type = avro

    a1.sinks.k1.hostname = hadoop104

    a1.sinks.k1.port = 4141

     

    # Describe the channel

    a1.channels.c1.type = memory

    a1.channels.c1.capacity = 1000

    a1.channels.c1.transactionCapacity = 100

     

    # Bind the source and sink to the channel

    a1.sources.r1.channels = c1

    a1.sinks.k1.channel = c1

    2.创建flume2-netcat-flume.conf

    配置Source监控端口44444数据流,配置Sink数据到下一级Flume:

    在hadoop102上创建配置文件并打开

    [atguigu@hadoop102 group3]$ touch flume2-netcat-flume.conf

    [atguigu@hadoop102 group3]$ vim flume2-netcat-flume.conf

    添加如下内容

    # Name the components on this agent

    a2.sources = r1

    a2.sinks = k1

    a2.channels = c1

     

    # Describe/configure the source

    a2.sources.r1.type = netcat

    a2.sources.r1.bind = hadoop102

    a2.sources.r1.port = 44444

     

    # Describe the sink

    a2.sinks.k1.type = avro

    a2.sinks.k1.hostname = hadoop104

    a2.sinks.k1.port = 4141

     

    # Use a channel which buffers events in memory

    a2.channels.c1.type = memory

    a2.channels.c1.capacity = 1000

    a2.channels.c1.transactionCapacity = 100

     

    # Bind the source and sink to the channel

    a2.sources.r1.channels = c1

    a2.sinks.k1.channel = c1

    3.创建flume3-flume-logger.conf

    配置source用于接收flume1与flume2发送过来的数据流,最终合并后sink到控制台。

    在hadoop104上创建配置文件并打开

    [atguigu@hadoop104 group3]$ touch flume3-flume-logger.conf

    [atguigu@hadoop104 group3]$ vim flume3-flume-logger.conf

    添加如下内容

    # Name the components on this agent

    a3.sources = r1

    a3.sinks = k1

    a3.channels = c1

     

    # Describe/configure the source

    a3.sources.r1.type = avro

    a3.sources.r1.bind = hadoop104

    a3.sources.r1.port = 4141

     

    # Describe the sink

    # Describe the sink

    a3.sinks.k1.type = logger

     

    # Describe the channel

    a3.channels.c1.type = memory

    a3.channels.c1.capacity = 1000

    a3.channels.c1.transactionCapacity = 100

     

    # Bind the source and sink to the channel

    a3.sources.r1.channels = c1

    a3.sinks.k1.channel = c1

    4.执行配置文件

    分别开启对应配置文件:flume3-flume-logger.conf,flume2-netcat-flume.conf,flume1-logger-flume.conf。

    [atguigu@hadoop104 flume]$ bin/flume-ng agent --conf conf/ --name a3 --conf-file job/group3/flume3-flume-logger.conf -Dflume.root.logger=INFO,console

     

    [atguigu@hadoop102 flume]$ bin/flume-ng agent --conf conf/ --name a2 --conf-file job/group3/flume2-netcat-flume.conf

     

    [atguigu@hadoop103 flume]$ bin/flume-ng agent --conf conf/ --name a1 --conf-file job/group3/flume1-logger-flume.conf

    5.在hadoop103上向/opt/module目录下的group.log追加内容

    [atguigu@hadoop103 module]$ echo 'hello' > group.log

    6.在hadoop102上向44444端口发送数据

    [atguigu@hadoop102 flume]$ telnet hadoop102 44444

    7.检查hadoop104上数据

    第4章 Flume监控之Ganglia

    4.1 Ganglia的安装与部署

    1) 安装httpd服务与php

    [atguigu@hadoop102 flume]$ sudo yum -y install httpd php

    2) 安装其他依赖

    [atguigu@hadoop102 flume]$ sudo yum -y install rrdtool perl-rrdtool rrdtool-devel

    [atguigu@hadoop102 flume]$ sudo yum -y install apr-devel

    3) 安装ganglia

    [atguigu@hadoop102 flume]$ sudo rpm -Uvh http://dl.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.noarch.rpm

    [atguigu@hadoop102 flume]$ sudo yum -y install ganglia-gmetad

    [atguigu@hadoop102 flume]$ sudo yum -y install ganglia-web

    [atguigu@hadoop102 flume]$ sudo yum install -y ganglia-gmond

    4) 修改配置文件/etc/httpd/conf.d/ganglia.conf

    [atguigu@hadoop102 flume]$ sudo vim /etc/httpd/conf.d/ganglia.conf

    修改为红颜色的配置:

    # Ganglia monitoring system php web frontend

    Alias /ganglia /usr/share/ganglia

    <Location /ganglia>

    Order deny,allow

    Deny from all

    Allow from all

    # Allow from 127.0.0.1

    # Allow from ::1

    # Allow from .example.com

    </Location>

    5) 修改配置文件/etc/ganglia/gmetad.conf

    [atguigu@hadoop102 flume]$ sudo vim /etc/ganglia/gmetad.conf

    修改为:

    data_source "hadoop102" 192.168.1.102

    6) 修改配置文件/etc/ganglia/gmond.conf

    [atguigu@hadoop102 flume]$ sudo vim /etc/ganglia/gmond.conf

    修改为:

    cluster {

    name = "hadoop102"

    owner = "unspecified"

    latlong = "unspecified"

    url = "unspecified"

    }

    udp_send_channel {

    #bind_hostname = yes # Highly recommended, soon to be default.

    # This option tells gmond to use a source address

    # that resolves to the machine's hostname. Without

    # this, the metrics may appear to come from any

    # interface and the DNS names associated with

    # those IPs will be used to create the RRDs.

    # mcast_join = 239.2.11.71

    host = 192.168.1.102

    port = 8649

    ttl = 1

    }

    udp_recv_channel {

    # mcast_join = 239.2.11.71

    port = 8649

    bind = 192.168.1.102

    retry_bind = true

    # Size of the UDP buffer. If you are handling lots of metrics you really

    # should bump it up to e.g. 10MB or even higher.

    # buffer = 10485760

    }

    7) 修改配置文件/etc/selinux/config

    [atguigu@hadoop102 flume]$ sudo vim /etc/selinux/config

    修改为:

    # This file controls the state of SELinux on the system.

    # SELINUX= can take one of these three values:

    # enforcing - SELinux security policy is enforced.

    # permissive - SELinux prints warnings instead of enforcing.

    # disabled - No SELinux policy is loaded.

    SELINUX=disabled

    # SELINUXTYPE= can take one of these two values:

    # targeted - Targeted processes are protected,

    # mls - Multi Level Security protection.

    SELINUXTYPE=targeted

    尖叫提示:selinux本次生效关闭必须重启,如果此时不想重启,可以临时生效之:

    [atguigu@hadoop102 flume]$ sudo setenforce 0

    5) 启动ganglia

    [atguigu@hadoop102 flume]$ sudo service httpd start

    [atguigu@hadoop102 flume]$ sudo service gmetad start

    [atguigu@hadoop102 flume]$ sudo service gmond start

    6) 打开网页浏览ganglia页面

    http://192.168.1.102/ganglia

    尖叫提示:如果完成以上操作依然出现权限不足错误,请修改/var/lib/ganglia目录的权限:

    [atguigu@hadoop102 flume]$ sudo chmod -R 777 /var/lib/ganglia

    4.2 操作Flume测试监控

    1) 修改/opt/module/flume/conf目录下的flume-env.sh配置:

    JAVA_OPTS="-Dflume.monitoring.type=ganglia

    -Dflume.monitoring.hosts=192.168.1.102:8649

    -Xms100m

    -Xmx200m"

    2) 启动Flume任务

    [atguigu@hadoop102 flume]$ bin/flume-ng agent \

    --conf conf/ \

    --name a1 \

    --conf-file job/flume-telnet-logger.conf \

    -Dflume.root.logger==INFO,console \

    -Dflume.monitoring.type=ganglia \

    -Dflume.monitoring.hosts=192.168.1.102:8649

    3) 发送数据观察ganglia监测图

    [atguigu@hadoop102 flume]$ telnet localhost 44444

    样式如图:

    图例说明:

    字段(图表名称)

    字段含义

    EventPutAttemptCount

    source尝试写入channel的事件总数量

    EventPutSuccessCount

    成功写入channel且提交的事件总数量

    EventTakeAttemptCount

    sink尝试从channel拉取事件的总数量。这不意味着每次事件都被返回,因为sink拉取的时候channel可能没有任何数据。

    EventTakeSuccessCount

    sink成功读取的事件的总数量

    StartTime

    channel启动的时间(毫秒)

    StopTime

    channel停止的时间(毫秒)

    ChannelSize

    目前channel中事件的总数量

    ChannelFillPercentage

    channel占用百分比

    ChannelCapacity

    channel的容量

    第5章 Flume高级之自定义MySQLSource

    5.1 自定义Source说明

    Source是负责接收数据到Flume Agent的组件。Source组件可以处理各种类型、各种格式的日志数据,包括avro、thrift、exec、jms、spooling directory、netcat、sequence generator、syslog、http、legacy。官方提供的source类型已经很多,但是有时候并不能满足实际开发当中的需求,此时我们就需要根据实际需求自定义某些Source。

    如:实时监控MySQL,从MySQL中获取数据传输到HDFS或者其他存储框架,所以此时需要我们自己实现MySQLSource。

    官方也提供了自定义source的接口:

    官网说明:https://flume.apache.org/FlumeDeveloperGuide.html#source

    5.3 自定义MySQLSource组成

    图6-1 自定义MySQLSource组成

    5.2 自定义MySQLSource步骤

    根据官方说明自定义MySqlSource需要继承AbstractSource类并实现Configurable和PollableSource接口。

    实现相应方法:

    getBackOffSleepIncrement()//暂不用

    getMaxBackOffSleepInterval()//暂不用

    configure(Context context)//初始化context

    process()//获取数据(从MySql获取数据,业务处理比较复杂,所以我们定义一个专门的类——SQLSourceHelper来处理跟MySql的交互),封装成Event并写入Channel,这个方法被循环调用

    stop()//关闭相关的资源

    5.4 代码实现

    5.4.1 导入Pom依赖

    <dependencies>

    <dependency>

    <groupId>org.apache.flume</groupId>

    <artifactId>flume-ng-core</artifactId>

    <version>1.7.0</version>

    </dependency>

    <dependency>

    <groupId>mysql</groupId>

    <artifactId>mysql-connector-java</artifactId>

    <version>5.1.27</version>

    </dependency>

    </dependencies>

    5.4.2 添加配置信息

    在ClassPath下添加jdbc.properties和log4j. properties

    jdbc.properties:

    dbDriver=com.mysql.jdbc.Driver

    dbUrl=jdbc:mysql://hadoop102:3306/mysqlsource?useUnicode=true&characterEncoding=utf-8
    dbUser=root
    dbPassword=000000

    log4j. properties:

    #--------console-----------

    log4j.rootLogger=info,myconsole,myfile
    log4j.appender.myconsole=org.apache.log4j.ConsoleAppender
    log4j.appender.myconsole.layout=org.apache.log4j.SimpleLayout
    #log4j.appender.myconsole.layout.ConversionPattern =%d [%t] %-5p [%c] - %m%n

    #log4j.rootLogger=error,myfile
    log4j.appender.myfile=org.apache.log4j.DailyRollingFileAppender
    log4j.appender.myfile.File=/tmp/flume.log
    log4j.appender.myfile.layout=org.apache.log4j.PatternLayout
    log4j.appender.myfile.layout.ConversionPattern =%d [%t] %-5p [%c] - %m%n

    5.4.3 SQLSourceHelper

    1)属性说明:

    属性

    说明(括号中为默认值)

    runQueryDelay    

    查询时间间隔(10000)

    batchSize

    缓存大小(100)

    startFrom

    查询语句开始id(0)

    currentIndex

    查询语句当前id,每次查询之前需要查元数据表

    recordSixe

    查询返回条数

    table

    监控的表名

    columnsToSelect

    查询字段(*)

    customQuery

    用户传入的查询语句

    query

    查询语句

    defaultCharsetResultSet

    编码格式(UTF-8)

    2)方法说明:

    方法

    说明

    SQLSourceHelper(Context context)

    构造方法,初始化属性及获取JDBC连接

    InitConnection(String url, String user, String pw)

    获取JDBC连接

    checkMandatoryProperties()

    校验相关属性是否设置(实际开发中可增加内容)

    buildQuery()

    根据实际情况构建sql语句,返回值String

    executeQuery()

    执行sql语句的查询操作,返回值List<List<Object>>

    getAllRows(List<List<Object>> queryResult)

    将查询结果转换为String,方便后续操作

    updateOffset2DB(int size)

    根据每次查询结果将offset写入元数据表

    execSql(String sql)

    具体执行sql语句方法

    getStatusDBIndex(int startFrom)

    获取元数据表中的offset

    queryOne(String sql)

    获取元数据表中的offset实际sql语句执行方法

    close()

    关闭资源

    3)代码分析


    4)代码实现:

    package com.atguigu.source;

     

    import org.apache.flume.Context;

    import org.apache.flume.conf.ConfigurationException;

    import org.slf4j.Logger;

    import org.slf4j.LoggerFactory;

     

    import java.io.IOException;

    import java.sql.*;

    import java.text.ParseException;

    import java.util.ArrayList;

    import java.util.List;

    import java.util.Properties;

     

    public class SQLSourceHelper {

     

    private static final Logger LOG = LoggerFactory.getLogger(SQLSourceHelper.class);

     

    private int runQueryDelay, //两次查询的时间间隔

    startFrom, //开始id

    currentIndex,     //当前id

    recordSixe = 0, //每次查询返回结果的条数

    maxRow; //每次查询的最大条数

     

    private String table, //要操作的表

    columnsToSelect, //用户传入的查询的列

    customQuery, //用户传入的查询语句

    query, //构建的查询语句

    defaultCharsetResultSet;//编码集

     

    //上下文,用来获取配置文件

    private Context context;

     

    //为定义的变量赋值(默认值),可在flume任务的配置文件中修改

    private static final int DEFAULT_QUERY_DELAY = 10000;

    private static final int DEFAULT_START_VALUE = 0;

    private static final int DEFAULT_MAX_ROWS = 2000;

    private static final String DEFAULT_COLUMNS_SELECT = "*";

    private static final String DEFAULT_CHARSET_RESULTSET = "UTF-8";

     

    private static Connection conn = null;

    private static PreparedStatement ps = null;

    private static String connectionURL, connectionUserName, connectionPassword;

     

    //加载静态资源

    static {

     

    Properties p = new Properties();

     

    try {

    p.load(SQLSourceHelper.class.getClassLoader().getResourceAsStream("jdbc.properties"));

    connectionURL = p.getProperty("dbUrl");

    connectionUserName = p.getProperty("dbUser");

    connectionPassword = p.getProperty("dbPassword");

    Class.forName(p.getProperty("dbDriver"));

     

    } catch (IOException | ClassNotFoundException e) {

    LOG.error(e.toString());

    }

    }

     

    //获取JDBC连接

    private static Connection InitConnection(String url, String user, String pw) {

    try {

     

    Connection conn = DriverManager.getConnection(url, user, pw);

     

    if (conn == null)

    throw new SQLException();

     

    return conn;

     

    } catch (SQLException e) {

    e.printStackTrace();

    }

     

    return null;

    }

     

    //构造方法

    SQLSourceHelper(Context context) throws ParseException {

     

    //初始化上下文

    this.context = context;

     

    //有默认值参数:获取flume任务配置文件中的参数,读不到的采用默认值

    this.columnsToSelect = context.getString("columns.to.select", DEFAULT_COLUMNS_SELECT);

     

    this.runQueryDelay = context.getInteger("run.query.delay", DEFAULT_QUERY_DELAY);

     

    this.startFrom = context.getInteger("start.from", DEFAULT_START_VALUE);

     

    this.defaultCharsetResultSet = context.getString("default.charset.resultset", DEFAULT_CHARSET_RESULTSET);

     

    //无默认值参数:获取flume任务配置文件中的参数

    this.table = context.getString("table");

    this.customQuery = context.getString("custom.query");

     

    connectionURL = context.getString("connection.url");

     

    connectionUserName = context.getString("connection.user");

     

    connectionPassword = context.getString("connection.password");

     

    conn = InitConnection(connectionURL, connectionUserName, connectionPassword);

     

    //校验相应的配置信息,如果没有默认值的参数也没赋值,抛出异常

    checkMandatoryProperties();

     

    //获取当前的id

    currentIndex = getStatusDBIndex(startFrom);

     

    //构建查询语句

    query = buildQuery();

    }

     

    //校验相应的配置信息(表,查询语句以及数据库连接的参数)

    private void checkMandatoryProperties() {

     

    if (table == null) {

    throw new ConfigurationException("property table not set");

    }

     

    if (connectionURL == null) {

    throw new ConfigurationException("connection.url property not set");

    }

     

    if (connectionUserName == null) {

    throw new ConfigurationException("connection.user property not set");

    }

     

    if (connectionPassword == null) {

    throw new ConfigurationException("connection.password property not set");

    }

    }

     

    //构建sql语句

    private String buildQuery() {

     

    String sql = "";

     

    //获取当前id

    currentIndex = getStatusDBIndex(startFrom);

    LOG.info(currentIndex + "");

     

    if (customQuery == null) {

    sql = "SELECT " + columnsToSelect + " FROM " + table;

    } else {

    sql = customQuery;

    }

     

    StringBuilder execSql = new StringBuilder(sql);

     

    //以id作为offset

    if (!sql.contains("where")) {

    execSql.append(" where ");

    execSql.append("id").append(">").append(currentIndex);

     

    return execSql.toString();

    } else {

    int length = execSql.toString().length();

     

    return execSql.toString().substring(0, length - String.valueOf(currentIndex).length()) + currentIndex;

    }

    }

     

    //执行查询

    List<List<Object>> executeQuery() {

     

    try {

    //每次执行查询时都要重新生成sql,因为id不同

    customQuery = buildQuery();

     

    //存放结果的集合

    List<List<Object>> results = new ArrayList<>();

     

    if (ps == null) {

    //

    ps = conn.prepareStatement(customQuery);

    }

     

    ResultSet result = ps.executeQuery(customQuery);

     

    while (result.next()) {

     

    //存放一条数据的集合(多个列)

    List<Object> row = new ArrayList<>();

     

    //将返回结果放入集合

    for (int i = 1; i <= result.getMetaData().getColumnCount(); i++) {

    row.add(result.getObject(i));

    }

     

    results.add(row);

    }

     

    LOG.info("execSql:" + customQuery + "\nresultSize:" + results.size());

     

    return results;

    } catch (SQLException e) {

    LOG.error(e.toString());

     

    // 重新连接

    conn = InitConnection(connectionURL, connectionUserName, connectionPassword);

     

    }

     

    return null;

    }

     

    //将结果集转化为字符串,每一条数据是一个list集合,将每一个小的list集合转化为字符串

    List<String> getAllRows(List<List<Object>> queryResult) {

     

    List<String> allRows = new ArrayList<>();

     

    if (queryResult == null || queryResult.isEmpty())

    return allRows;

     

    StringBuilder row = new StringBuilder();

     

    for (List<Object> rawRow : queryResult) {

     

    Object value = null;

     

    for (Object aRawRow : rawRow) {

     

    value = aRawRow;

     

    if (value == null) {

    row.append(",");

    } else {

    row.append(aRawRow.toString()).append(",");

    }

    }

     

    allRows.add(row.toString());

    row = new StringBuilder();

    }

     

    return allRows;

    }

     

    //更新offset元数据状态,每次返回结果集后调用。必须记录每次查询的offset值,为程序中断续跑数据时使用,以id为offset

    void updateOffset2DB(int size) {

    //以source_tab做为KEY,如果不存在则插入,存在则更新(每个源表对应一条记录)

    String sql = "insert into flume_meta(source_tab,currentIndex) VALUES('"

    + this.table

    + "','" + (recordSixe += size)

    + "') on DUPLICATE key update source_tab=values(source_tab),currentIndex=values(currentIndex)";

     

    LOG.info("updateStatus Sql:" + sql);

     

    execSql(sql);

    }

     

    //执行sql语句

    private void execSql(String sql) {

     

    try {

    ps = conn.prepareStatement(sql);

     

    LOG.info("exec::" + sql);

     

    ps.execute();

    } catch (SQLException e) {

    e.printStackTrace();

    }

    }

     

    //获取当前id的offset

    private Integer getStatusDBIndex(int startFrom) {

     

    //从flume_meta表中查询出当前的id是多少

    String dbIndex = queryOne("select currentIndex from flume_meta where source_tab='" + table + "'");

     

    if (dbIndex != null) {

    return Integer.parseInt(dbIndex);

    }

     

    //如果没有数据,则说明是第一次查询或者数据表中还没有存入数据,返回最初传入的值

    return startFrom;

    }

     

    //查询一条数据的执行语句(当前id)

    private String queryOne(String sql) {

     

    ResultSet result = null;

     

    try {

    ps = conn.prepareStatement(sql);

    result = ps.executeQuery();

     

    while (result.next()) {

    return result.getString(1);

    }

    } catch (SQLException e) {

    e.printStackTrace();

    }

     

    return null;

    }

     

    //关闭相关资源

    void close() {

     

    try {

    ps.close();

    conn.close();

    } catch (SQLException e) {

    e.printStackTrace();

    }

    }

     

    int getCurrentIndex() {

    return currentIndex;

    }

     

    void setCurrentIndex(int newValue) {

    currentIndex = newValue;

    }

     

    int getRunQueryDelay() {

    return runQueryDelay;

    }

     

    String getQuery() {

    return query;

    }

     

    String getConnectionURL() {

    return connectionURL;

    }

     

    private boolean isCustomQuerySet() {

    return (customQuery != null);

    }

     

    Context getContext() {

    return context;

    }

     

    public String getConnectionUserName() {

    return connectionUserName;

    }

     

    public String getConnectionPassword() {

    return connectionPassword;

    }

     

    String getDefaultCharsetResultSet() {

    return defaultCharsetResultSet;

    }

    }

    5.4.4 MySQLSource

    代码实现:

    package com.atguigu.source;

     

    import org.apache.flume.Context;

    import org.apache.flume.Event;

    import org.apache.flume.EventDeliveryException;

    import org.apache.flume.PollableSource;

    import org.apache.flume.conf.Configurable;

    import org.apache.flume.event.SimpleEvent;

    import org.apache.flume.source.AbstractSource;

    import org.slf4j.Logger;

    import org.slf4j.LoggerFactory;

     

    import java.text.ParseException;

    import java.util.ArrayList;

    import java.util.HashMap;

    import java.util.List;

     

    public class SQLSource extends AbstractSource implements Configurable, PollableSource {

     

    //打印日志

    private static final Logger LOG = LoggerFactory.getLogger(SQLSource.class);

     

    //定义sqlHelper

    private SQLSourceHelper sqlSourceHelper;

     

     

    @Override

    public long getBackOffSleepIncrement() {

    return 0;

    }

     

    @Override

    public long getMaxBackOffSleepInterval() {

    return 0;

    }

     

    @Override

    public void configure(Context context) {

     

    try {

    //初始化

    sqlSourceHelper = new SQLSourceHelper(context);

    } catch (ParseException e) {

    e.printStackTrace();

    }

    }

     

    @Override

    public Status process() throws EventDeliveryException {

     

    try {

    //查询数据表

    List<List<Object>> result = sqlSourceHelper.executeQuery();

     

    //存放event的集合

    List<Event> events = new ArrayList<>();

     

    //存放event头集合

    HashMap<String, String> header = new HashMap<>();

     

    //如果有返回数据,则将数据封装为event

    if (!result.isEmpty()) {

     

    List<String> allRows = sqlSourceHelper.getAllRows(result);

     

    Event event = null;

     

    for (String row : allRows) {

    event = new SimpleEvent();

    event.setBody(row.getBytes());

    event.setHeaders(header);

    events.add(event);

    }

     

    //将event写入channel

    this.getChannelProcessor().processEventBatch(events);

     

    //更新数据表中的offset信息

    sqlSourceHelper.updateOffset2DB(result.size());

    }

     

    //等待时长

    Thread.sleep(sqlSourceHelper.getRunQueryDelay());

     

    return Status.READY;

    } catch (InterruptedException e) {

    LOG.error("Error procesing row", e);

     

    return Status.BACKOFF;

    }

    }

     

    @Override

    public synchronized void stop() {

     

    LOG.info("Stopping sql source {} ...", getName());

     

    try {

    //关闭资源

    sqlSourceHelper.close();

    } finally {

    super.stop();

    }

    }

    }

    5.5 测试

    5.5.1 Jar包准备

    1) 将MySql驱动包放入Flume的lib目录下

    [atguigu@hadoop102 flume]$ cp \

    /opt/sorfware/mysql-libs/mysql-connector-java-5.1.27/mysql-connector-java-5.1.27-bin.jar \

    /opt/module/flume/lib/

    2) 打包项目并将Jar包放入Flume的lib目录下

    5.5.2 配置文件准备

    1)创建配置文件并打开

    [atguigu@hadoop102 job]$ touch mysql.conf

    [atguigu@hadoop102 job]$ vim mysql.conf

    2)添加如下内容

    # Name the components on this agent

    a1.sources = r1

    a1.sinks = k1

    a1.channels = c1

     

    # Describe/configure the source

    a1.sources.r1.type = com.atguigu.source.SQLSource

    a1.sources.r1.connection.url = jdbc:mysql://192.168.9.102:3306/mysqlsource

    a1.sources.r1.connection.user = root

    a1.sources.r1.connection.password = 000000

    a1.sources.r1.table = student

    a1.sources.r1.columns.to.select = *

    #a1.sources.r1.incremental.column.name = id

    #a1.sources.r1.incremental.value = 0

    a1.sources.r1.run.query.delay=5000

     

    # Describe the sink

    a1.sinks.k1.type = logger

     

    # Describe the channel

    a1.channels.c1.type = memory

    a1.channels.c1.capacity = 1000

    a1.channels.c1.transactionCapacity = 100

     

    # Bind the source and sink to the channel

    a1.sources.r1.channels = c1

    a1.sinks.k1.channel = c1

    5.5.3 MySql表准备

    1) 创建MySqlSource数据库

    CREATE DATABASE mysqlsource;

    2) 在MySqlSource数据库下创建数据表Student和元数据表Flume_meta

    CREATE TABLE `student` (

    `id` int(11) NOT NULL AUTO_INCREMENT,

    `name` varchar(255) NOT NULL,

    PRIMARY KEY (`id`)

    );

    CREATE TABLE `flume_meta` (

    `source_tab` varchar(255) NOT NULL,

    `currentIndex` varchar(255) NOT NULL,

    PRIMARY KEY (`source_tab`)

    );

    1. 向数据表中添加数据

      1 zhangsan

      2 lisi

      3 wangwu

      4 zhaoliu

      1. 测试并查看结果

    2. 任务执行

      [atguigu@hadoop102 flume]$ bin/flume-ng agent --conf conf/ --name a1 \

      --conf-file job/mysql.conf -Dflume.root.logger=INFO,console

    3. 结果展示,如图6-2所示:

    图6-2 结果展示

    第6章 知识扩展

    6.1 常见正则表达式语法

    次)。例如,"zo+"能匹配"zo"以及"zoo",但不能匹配"z"。+等价于{1,}。

    [a-z]

    字符范围。匹配指定范围内的任意字符。例如,"[a-z]"可以匹配"a"到"z"范围内的任意小写字母字符。

    注意:只有连字符在字符组内部时,并且出现在两个字符之间时,才能表示字符的范围; 如果出字符组的开头,则只能表示连字符本身.

    6.2 练习

    案例需求:

    1)flume-1监控hive.log日志,flume-1的数据传送给flume-2,flume-2将数据追加到本地文件,同时将数据传输到flume-3。

    2)flume-4监控本地另一个自己创建的文件any.txt,并将数据传送给flume-3。

    3)flume-3将汇总数据写入到HDFS。

    请先画出结构图,再开始编写任务脚本。

    第7章 企业真实面试题(重点)

    7.1 你是如何实现Flume数据传输的监控的

    使用第三方框架Ganglia实时监控Flume。

    7.2 Flume的Source,Sink,Channel的作用?你们Source是什么类型?

        1、作用

    (1)Source组件是专门用来收集数据的,可以处理各种类型、各种格式的日志数据,包括avro、thrift、exec、jms、spooling directory、netcat、sequence generator、syslog、http、legacy

    (2)Channel组件对采集到的数据进行缓存,可以存放在Memory或File中。

    (3)Sink组件是用于把数据发送到目的地的组件,目的地包括Hdfs、Logger、avro、thrift、ipc、file、Hbase、solr、自定义。

    2、我公司采用的Source类型为:

    (1)监控后台日志:exec

    (2)监控后台产生日志的端口:netcat

    Exec spooldir

    7.3 Flume的Channel Selectors

    7.4 Flume参数调优

    1. Source

    增加Source个(使用Tair Dir Source时可增加FileGroups个数)可以增大Source的读取数据的能力。例如:当某一个目录产生的文件过多时需要将这个文件目录拆分成多个文件目录,同时配置好多个Source 以保证Source有足够的能力获取到新产生的数据。

    batchSize参数决定Source一次批量运输到Channel的event条数,适当调大这个参数可以提高Source搬运Event到Channel时的性能。

    2. Channel 

    type 选择memory时Channel的性能最好,但是如果Flume进程意外挂掉可能会丢失数据。type选择file时Channel的容错性更好,但是性能上会比memory channel差。

    使用file Channel时dataDirs配置多个不同盘下的目录可以提高性能。

    Capacity 参数决定Channel可容纳最大的event条数。transactionCapacity 参数决定每次Source往channel里面写的最大event条数和每次Sink从channel里面读的最大event条数。transactionCapacity需要大于Source和Sink的batchSize参数。

    3. Sink 

    增加Sink的个数可以增加Sink消费event的能力。Sink也不是越多越好够用就行,过多的Sink会占用系统资源,造成系统资源不必要的浪费。

    batchSize参数决定Sink一次批量从Channel读取的event条数,适当调大这个参数可以提高Sink从Channel搬出event的性能。

    7.5 Flume的事务机制

    Flume的事务机制(类似数据库的事务机制):Flume使用两个独立的事务分别负责从Soucrce到Channel,以及从Channel到Sink的事件传递。比如spooling directory source 为文件的每一行创建一个事件,一旦事务中所有的事件全部传递到Channel且提交成功,那么Soucrce就将该文件标记为完成。同理,事务以类似的方式处理从Channel到Sink的传递过程,如果因为某种原因使得事件无法记录,那么事务将会回滚。且所有的事件都会保持到Channel中,等待重新传递。

    7.6 Flume采集数据会丢失吗?

    不会,Channel存储可以存储在File中,数据传输自身有事务。

大数据技术之Flume的更多相关文章

  1. 大数据技术之Flume研究摘要(一)

    Flume是Cloudera提供的一个高可用的,高可靠的.分布式的海量日志採集.聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据:同一时候,Flume提供对数据进行简单处理 ...

  2. 除Hadoop大数据技术外,还需了解的九大技术

    除Hadoop外的9个大数据技术: 1.Apache Flink 2.Apache Samza 3.Google Cloud Data Flow 4.StreamSets 5.Tensor Flow ...

  3. 从大数据技术变迁猜一猜AI人工智能的发展

    目前大数据已经成为了各家互联网公司的核心资产和竞争力了,其实不仅是互联网公司,包括传统企业也拥有大量的数据,也想把这些数据发挥出作用.在这种环境下,大数据技术的重要性和火爆程度相信没有人去怀疑. 而A ...

  4. 利用大数据技术处理海量GPS数据

    我秀中国物联网地图服务平台目前接入的监控车辆近百万辆,每天采集GPS数据7亿多条,产生日志文件70GB,使用传统的数据处理方式非常耗时. 比如,仅仅对GPS做一些简单的统计分析,程序就需要几个小时才能 ...

  5. 【学习笔记】大数据技术原理与应用(MOOC视频、厦门大学林子雨)

    1 大数据概述 大数据特性:4v volume velocity variety value 即大量化.快速化.多样化.价值密度低 数据量大:大数据摩尔定律 快速化:从数据的生成到消耗,时间窗口小,可 ...

  6. 大数据技术之Hadoop入门

      第1章 大数据概论 1.1 大数据概念 大数据概念如图2-1 所示. 图2-1 大数据概念 1.2 大数据特点(4V) 大数据特点如图2-2,2-3,2-4,2-5所示 图2-2 大数据特点之大量 ...

  7. 参加2013中国大数据技术大会(BDTC2013)

    2013年12月5日-6日参加了为期两天的2013中国大数据技术大会(Big Data Technology Conference, BDTC2013),本期会议主题是:“应用驱动的架构与技术 ”.大 ...

  8. 大数据技术人年度盛事! BDTC 2016将于12月8-10日在京举行

    2016年12月8日-10日,由中国计算机学会(CCF)主办,CCF大数据专家委员会承办,中国科学院计算技术研究所和CSDN共同协办的2016中国大数据技术大会(Big Data Technology ...

  9. 大数据技术 vs 数据库一体机[转]

    http://blog.sina.com.cn/s/blog_7ca5799101013dtb.html 目前,虽然大数据与数据库一体机都很火热,但相当一部分人却无法对深入了解这两者的本质区别.这里便 ...

随机推荐

  1. 基于阿里云安装脚本扩展 之 自动安装mongodb及php扩展

    好久没有发布文章了,有点跟不上当初这个博客的初衷.为了使自己的博客更新不半途而废,今天特意再写了一个自动安装脚本,一样是基于阿里云的服务端安装脚本进行的扩展.闲话不说,直接放代码: #!/bin/ba ...

  2. 在Linux下使用gcc运行C语言程序

    Linux下使用最广泛的C/C++编译器是GCC,大多数的Linux发行版本都默认安装,不管是开发人员还是初学者,一般都将GCC作为Linux下首选的编译工具.本教程毫不犹豫地使用GCC来编译C程序. ...

  3. 给NetBeans配置javafx环境

    JavaFX开发环境安装配置,这里给大家介绍一个非常有用的步骤 从Java8开始,JDK(Java开发工具包)包括了JavaFX库. 因此,要运行JavaFX应用程序,您只需要在系统中安装Java8或 ...

  4. 高性能非阻塞 Web 服务器 Undertow

    Undertow 简介 Undertow是一个用java编写的.灵活的.高性能的Web服务器,提供基于NIO的阻塞和非阻塞API. Undertow的架构是组合式的,可以通过组合各种小型的目的单一的处 ...

  5. Hadoop中map数的计算

    转载▼ Hadoop中在计算一个JOB需要的map数之前首先要计算分片的大小.计算分片大小的公式是: goalSize = totalSize / mapred.map.tasks minSize = ...

  6. vue 二维码长按保存和复制内容

    效果图: 二维码用了 qrcode.vue npm install qrcode.vue --save 复制内容用了 vue-clipboard2 npm install vue-clipboard2 ...

  7. 【python之路32】python异常处理

    一.捕获异常 1.try  except #!usr/bin/env python # -*- coding:utf-8 -*- num = input("请输入一个数字:") t ...

  8. loj6402 校门外的树(dp,多项式求逆)

    https://loj.ac/problem/6402 庆祝一下,,,第一个我自己做出来的,,,多项式的题(没办法,我太弱 虽然用了2个小时才想出来,但这毕竟是0的突破…… 首先声明,虽然我写的题解很 ...

  9. node学习记录之res,req处理方法

    上一篇中,我们讲述了怎么去用node搭建一个服务器环境,然后设置路由 在路由中我们用了一些方法,req.query("id") , res.end() , res.send()这三 ...

  10. 【笔记】LR中设置检查点

      我们为什么需要在LR中设置检查点?? 我们在录制编写脚本后,通常会进行回放,如果回放通过没有错误.我们就认为脚本是正确的.那么LR怎么区分脚本是否回放正确:基本上所有脚本回放错误都是因为 404错 ...