关于互信息(Mutual Information),我有些话要说
两个随机变量的独立性表示两个变量X与Y是否有关系(贝叶斯可证),但是关系的强弱(mutual dependence)是无法表示的,为此我们引入了互信息。
其中 p(x,y) 是 X 和 Y 的联合概率分布函数,而p(x)和p(y)分别是 X 和 Y 的边缘概率分布函数。


此外,互信息是非负的(即 I(X;Y) ≥ 0; 见下文),而且是对称的(即 I(X;Y) = I(Y;X))。
但是很明显,信息量是有随机性的
于是就有了平均互信息
2.平均互信息量的物理含义
(1)观察者站在输出端
(2)观察者站在输入端
(3)观察者站在通信系统总体立场上
3.平均互信息量的性质
(1)对称性
(2)非负性
(3)极值性
(4) 凸函数性
(5)数据处理定理
对于互信息我们可以证明下列等式:
I(X;Y) = H(Y) - H(Y|X)
直观地说,如果把熵 H(Y) 看作一个随机变量不确定度的量度,那么 H(Y|X) 就是 X 没有涉及到的 Y 的部分的不确定度的量度。这就是“在 X 已知之后 Y 的剩余不确定度的量”,于是第一个等式的右边就可以读作“Y的不确定度,减去在 X 已知之后 Y 的剩余不确定度的量”,此式等价于“移除知道 X 后 Y 的不确定度的量”。
这证实了互信息的直观意义为知道其中一个变量提供的另一个的信息量(即不确定度的减少量)。
互信息也可以表示为两个随机变量的边缘分布 X 和 Y 的乘积 p(x) × p(y) 相对于随机变量的联合熵 p(x,y) 的相对熵:

关于互信息(Mutual Information),我有些话要说的更多相关文章
- 互信息(Mutual Information)
本文根据以下参考资料进行整理: 1.维基百科:https://zh.wikipedia.org/wiki/%E4%BA%92%E4%BF%A1%E6%81%AF 2.新浪博客:http://blog. ...
- 论文解读( N2N)《Node Representation Learning in Graph via Node-to-Neighbourhood Mutual Information Maximization》
论文信息 论文标题:Node Representation Learning in Graph via Node-to-Neighbourhood Mutual Information Maximiz ...
- 双目立体匹配经典算法之Semi-Global Matching(SGM)概述:匹配代价计算之互信息(Mutual Information,MI)
半全局立体匹配算法Semi-Global Matching,SGM由学者Hirschmüller在2005年所提出1,提出的背景是一方面高效率的局部算法由于所基于的局部窗口视差相同的假设在很多情况 ...
- Mutual information and Normalized Mutual information 互信息和标准化互信息
实验室最近用到nmi( Normalized Mutual information )评价聚类效果,在网上找了一下这个算法的实现,发现满意的不多. 浙江大学蔡登教授有一个,http://www.zju ...
- 泡泡一分钟:Robust and Fast 3D Scan Alignment Using Mutual Information
Robust and Fast 3D Scan Alignment Using Mutual Information 使用互信息进行稳健快速的三维扫描对准 https://arxiv.org/pdf/ ...
- Computer Vision_33_SIFT:A novel coarse-to-fine scheme for automatic image registration based on SIFT and mutual information——2014
此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...
- Image Processing and Analysis_15_Image Registration:Multi-modal volume registration by maximization of mutual information——1996
此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...
- Mutual Information
Mutal Information, MI, 中文名称:互信息. 用于描述两个概率分布的相似/相关程度. 常用于衡量两个不同聚类算法在同一个数据集的聚类结果的相似性/共享的信息量. 给定两种聚类结果\ ...
- [论文阅读笔记] Adversarial Mutual Information Learning for Network Embedding
[论文阅读笔记] Adversarial Mutual Information Learning for Network Embedding 本文结构 解决问题 主要贡献 算法原理 实验结果 参考文献 ...
- 论文解读(GMI)《Graph Representation Learning via Graphical Mutual Information Maximization》2
Paper Information 论文作者:Zhen Peng.Wenbing Huang.Minnan Luo.Q. Zheng.Yu Rong.Tingyang Xu.Junzhou Huang ...
随机推荐
- P1098 方程解的个数
题目描述 给出一个正整数N,请你求出x+y+z=N这个方程的正整数解的组数(1<=x<=y<=z<1000).其中,1<=x<=y<=z<=N . 输入 ...
- java 实现类似spring的可配置的AOP框架
一.工厂类BeanFactory: 1.工厂类BeanFactory负责创建目标类或代理类的实例对象,并通过配置文件实现切换. 2.getBean方法根据参数字符串返回一个相应的实例对象,如果参数字符 ...
- H3C 指定下次启动加载的应用程序文件
- dotnet 通过 WMI 获取系统补丁
本文告诉大家如何通过 WMI 获取补丁 通过 Win32_QuickFixEngineering 可以获取系统启动的服务 下面代码只是获取补丁的 kb 字符 const string query = ...
- 【18.69%】【codeforces 672C】Recycling Bottles
time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...
- BGP团体属性的应用案例
XRV1 ===================================================================== version 15.5service times ...
- eclipse要修改的配置
1. 修改 html的字体大小 window->preferences->General--> appearance--> Colors and fonts-->basi ...
- linux c函数参考手册
一.字符测试 isalnum(测试字符是否为英文字母或数字) isalpha(测试字符是否为英文字母) isascii(测试字符是否为ascii码字符) isblank(测试字符是否为空格字符) is ...
- 线程的通信与协作:sleep、wait、notify、yield、join关系与区别
一.sleep.join.yield.wait.notify.notifyAll 1.sleep() 使当前线程(即调用该方法的线程)暂停执行一段时间,让其他线程有机会继续执行,但它并不释放对象锁.也 ...
- oracle数据库创建实例
数据库已经安装完成,可以正常登陆查看用户等操作 system用户只能用normal身份登陆em.除非你对它授予了sysdba的系统权限或者syspoer系统权限. sys用户具有“SYSDBA”或者“ ...