我们可以灵活运用\(C++\)的语法来解决此题。

解释一下代码中会出现的语法:

  1. \(string::iterator\ it\)表示定义了一个\(string\)类型的迭代器\(it\),\(^*it\)表示当前字符串的第\(it\)个元素。
  2. \(^*max\)_\(element(tot + 1,tot + m + 1)\)这个函数返回的是一个长的为\(m\)的数组\(tot\)中元素的最大值。

然后就是一些基本的模拟了。

\(AC\)代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cctype>//头文件准备
#define itn int
#define gI gi using namespace std; inline int gi()
{
int f = 1, x = 0; char c = getchar();
while (c < '0' || c > '9') { if (c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') { x = x * 10 + c - '0'; c = getchar();}
return f * x;
}//快速读入 int n, m, tot[1005]/*每个文件中最大的列数*/, cnt, sum/*最大的行数*/;
string s, ans[1005]/*每一行的答案*/, tr; int main()
{
n = gi();
for (itn i = 1; i <= n; i+=1)
{
m = gi(), cin >> s;
memset(tot, 0, sizeof(tot));//记得清空数组
ans[0] = ans[0] + s/*加上表头*/, sum = max(sum, m)/*计算最大的行数*/;
for (int j = 1; j <= m; j+=1)
{
cin >> tr;//输入每行的元素
ans[j] = ans[j] + tr;//先加入答案
for (string :: iterator it = tr.begin(); it != tr.end(); it+=1)//遍历第j行
{
tot[j] = tot[j] + (*it == ',');//计算','分隔符个数
}
}
cnt = *max_element(tot + 1,tot + m + 1);//得出最多的','分隔符数量
for (int j = 0; j < 1005; j+=1)//枚举行。因为我们不知道最终答案的行数,因此就要枚举到最大的行数
{
for (int k = tot[j]; k <= ((i == n) ? (cnt - 1) : (cnt)); k+=1)//为答案增加','分隔符,注意判断i==n的情况,此时就要少加上一个','
{
ans[j] = ans[j] + ',';//加上','分隔符
}
}
}
for (int i = 0; i <= sum; i+=1)
{
cout << ans[i] << endl;//输出答案
}
return 0;
}

题解【洛谷P5483】[JLOI2011]小A的烦恼的更多相关文章

  1. 题解 洛谷P2189 【小Z的传感器】

    这题就是考察什么时候建边,貌似和搜索没有半毛钱关系\(qwq\) 首先没有传感器的房间是可以随便走来走去的,因为我们不用考虑顺序.于是就考虑先把这些点的相互的边给建起来. 接下来分析一波,对于第\(i ...

  2. 【洛谷4005】小Y和地铁(搜索)

    [洛谷4005]小Y和地铁(搜索) 题面 洛谷 有点长. 题解 首先对于需要被链接的两个点,样例中间基本上把所有的情况都给出来了. 但是还缺了一种从下面绕道左边在从整个上面跨过去在从右边绕到下面来的情 ...

  3. 【洛谷3674】小清新人渣的本愿(莫队,bitset)

    [洛谷3674]小清新人渣的本愿(莫队,bitset) 题面 洛谷,自己去看去,太长了 题解 很显然的莫队. 但是怎么查询那几个询问. 对于询问乘积,显然可以暴力枚举因数(反正加起来也是\(O(n\s ...

  4. 【BZOJ】2760: [JLOI2011]小A的烦恼【字符串模拟】

    2760: [JLOI2011]小A的烦恼 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 406  Solved: 258[Submit][Statu ...

  5. 洛谷 1373 dp 小a和uim之大逃离 良心题解

    洛谷 1373 dp 这题还不算太难,,当初看的时候不是很理解题意,以为他们会选择两条不同的路径,导致整体思路混乱 传送门 其实理解题意和思路之后还是敲了不短的时间,一部分身体原因再加上中午休息不太好 ...

  6. BZOJ1563/洛谷P1912 诗人小G 【四边形不等式优化dp】

    题目链接 洛谷P1912[原题,需输出方案] BZOJ1563[无SPJ,只需输出结果] 题解 四边形不等式 什么是四边形不等式? 一个定义域在整数上的函数\(val(i,j)\),满足对\(\for ...

  7. 题解-洛谷P4229 某位歌姬的故事

    题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \( ...

  8. [HNOI2009]双递增序列(洛谷P4728)+小烈送菜(内部训练题)——奇妙的dp

    博主学习本题的经过嘤嘤嘤: 7.22 : 听学长讲(一知半解)--自己推(推不出来)--网上看题解--以为自己会了(网上题解是错的)--发现错误以后又自己推(没推出来)--给学长发邮件--得到正确解法 ...

  9. 题解 洛谷 P2010 【回文日期】

    By:Soroak 洛谷博客 知识点:模拟+暴力枚举 思路:题目中有提到闰年然后很多人就认为,闰年是需要判断的其实,含有2月29号的回文串,前四位是一个闰年那么我们就可以直接进行暴力枚举 一些小细节: ...

  10. 题解 洛谷P5018【对称二叉树】(noip2018T4)

    \(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...

随机推荐

  1. npm常用模块之cross-env使用

    更多npm常用模块使用请访问:npm常用模块汇总 cross-env这是一款运行跨平台设置和使用环境变量的脚本. 为什么需要cross-env? NODE_ENV=production像这样设置环境变 ...

  2. 收录了老师发的几个 download ebook and paper 的 webpage

    Library Genesis (important) http://zh.b-ok.org National Academic Press OpenStax CNX gen.lib.rus.ec l ...

  3. JDBC连接数据库的7个步骤

    1.JDBC所需的四个参数username.password.url.driverClass 2.加载JDBC驱动程序 3.创建数据库连接connection对象conn 4.创建preparedSt ...

  4. ubuntu set up 6 - NTFS Mount

    1. NTFS Mounted as read-only https://askubuntu.com/questions/1138076/ubuntu-18-04-cant-write-on-ntfs ...

  5. WPF实现高仿统计标题卡

    飘哇~~~,在家数瓜子仁儿,闲来无事,看东看西,也找点儿,最近正在看看WPF动画,光看也是不行,需要带着目的去学习,整合知识碎片,恰巧,看到Github中一个基于Ant Designer设计风格的后台 ...

  6. 删除在wireshark中保存的filter的方法

    现在想删除下图的filter,方法是:Edit->preferences->Filter Expressions

  7. centos7 配置mailx使用外部smtp发送外网邮件

    1- 安装 1.1- 安装mailx yum install mailx -y 2- 配置 2.1- 配置外部发件邮箱 vim /etc/mail.rc 在最后加上: //如果不存在,则编辑/etc/ ...

  8. SpringBoot之Configuration

      在SpringBoot中可以通过@Configuration对某个类注解将该类申明为配置类,以此在代替先前spring版本中配置xml中的功能,并且增加了可读性与维护性.并且在注解类中的类方法中可 ...

  9. Qt Installer Framework翻译(7-8)

    C++ API C ++ API文档是为开发Qt Installer Framework的开发人员编写的. 它描述了内部API,因此没有兼容性保证. 此外,该文档尚在开发中,因此缺少部分内容,而其他部 ...

  10. Prettier - Code formatter使用

    更多VSCode插件使用请访问:VSCode常用插件汇总 Prettier - Code formatter这是一款 格式化js.css代码插件,暂不解释. Prettier是什么? Prettier ...