POJ - 1845 Sumdiv(分治)
题意:求$A^{B}$的所有约数之和$mod\ 9901$
思路:由结论有,一个数$n$进行质因数分解得到$n={p_{1}}^{c_{1}} * {p_{2}}^{c_{2}} *...* {p_{k}}^{c_{k}}$,那么$n$的约数之和为
$$sum=(1+{p_{1}}^{1}+\cdots+{p_{1}}^{c_{1}})*(1+{p_{2}}^{1}+\cdots +{p_{2}}^{c_{2}})*\cdots*(1+{p_{k}}^{1}+\cdots+{p_{k}}^{c_{k}})$$
所以对$A$质因数分解后,那么$A^{B}$的约数之和
$$sum=(1+{p_{1}}^{1}+\cdots+{p_{1}}^{B*c_{1}})*(1+{p_{2}}^{1}+\cdots +{p_{2}}^{B*c_{2}})*\cdots*(1+{p_{k}}^{1}+\cdots+{p_{k}}^{B*c_{k}})$$
上式中每个括号内都是等比数列,利用分治法对等比数列求和,设$sum(p,c)=1+p+p^2+\cdots+p^{c}$
当$c$为奇数时
$$sum(p,c)=(1+p+\cdots+p^{\frac{c-1}{2}})+(p^{\frac{c+1}{2}}+\cdots+p^c)=(1+p^{\frac{c+1}{2}})*sum(p,\frac{c-1}{2})$$
当$c$为偶数时
$$sum(p,c)=(1+p+\cdots+p^{\frac{c}{2}-1})+(p^{\frac{c}{2}}+p^{\frac{c}{2}+1}\cdots+p^{c-1})+p^c=(1+p^{\frac{c}{2}})*sum(p,\frac{c}{2}-1)+p^c$$
当$c$等于$0$,结束递归, 返回$1$即可
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cmath> using namespace std; typedef long long ll; const int N = ;
const ll mod = ; ll a, b;
ll p[N], c[N], m; void divide(ll n)
{
m = ;
for (ll i = ; i <= sqrt(n); i++) {
if ( == n % i) {
p[++m] = i, c[m] = ;
while ( == n % i) n /= i, c[m]++;
}
}
if (n > ) p[++m] = n, c[m] = ;
return;
} ll power(ll a, ll b, ll p)
{
ll res = ;
while (b) {
if (b & ) res = (res * a) % p;
a = (a * a) % p, b >>= ;
}
return res % p;
} ll sum(ll p, ll c)
{
if ( == c) return ;
if ( == c % ) {
ll tp1 = ( + power(p, (c + ) / , mod)) % mod;
ll tp2 = sum(p, (c - ) / ) % mod;
return tp1 * tp2 % mod;
}
else {
ll tp1 = ( + power(p, c / , mod)) % mod;
ll tp2 = sum(p, c / - ) % mod;
return (tp1 * tp2 % mod + power(p, c, mod)) % mod;
}
} int main()
{
scanf("%lld%lld", &a, &b);
divide(a);
if ( == a) printf("0\n");
else {
ll res = ;
for (int i = ; i <= m; i++)
res = res * sum(p[i], b * c[i]) % mod;
printf("%lld\n", res);
}
return ;
}
POJ - 1845 Sumdiv(分治)的更多相关文章
- poj 1845 POJ 1845 Sumdiv 数学模板
筛选法+求一个整数的分解+快速模幂运算+递归求计算1+p+p^2+````+p^nPOJ 1845 Sumdiv求A^B的所有约数之和%9901 */#include<stdio.h>#i ...
- poj 1845 Sumdiv 约数和定理
Sumdiv 题目连接: http://poj.org/problem?id=1845 Description Consider two natural numbers A and B. Let S ...
- POJ 1845 Sumdiv 【二分 || 逆元】
任意门:http://poj.org/problem?id=1845. Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions ...
- POJ 1845 Sumdiv#质因数分解+二分
题目链接:http://poj.org/problem?id=1845 关于质因数分解,模板见:http://www.cnblogs.com/atmacmer/p/5285810.html 二分法思想 ...
- poj 1845 Sumdiv (等比求和+逆元)
题目链接:http://poj.org/problem?id=1845 题目大意:给出两个自然数a,b,求a^b的所有自然数因子的和模上9901 (0 <= a,b <= 50000000 ...
- POJ 1845 Sumdiv [素数分解 快速幂取模 二分求和等比数列]
传送门:http://poj.org/problem?id=1845 大致题意: 求A^B的所有约数(即因子)之和,并对其取模 9901再输出. 解题基础: 1) 整数的唯一分解定理: 任意正整数都有 ...
- POJ 1845 Sumdiv
快速幂+等比数列求和.... Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 12599 Accepted: 305 ...
- POJ 1845 Sumdiv 【逆元】
题意:求A^B的所有因子之和 很容易知道,先把分解得到,那么得到,那么 的所有因子和的表达式如下 第一种做法是分治求等比数列的和 用递归二分求等比数列1+pi+pi^2+pi^3+...+pi^n: ...
- POJ 1845 Sumdiv(逆元)
题目链接:Sumdiv 题意:给定两个自然数A,B,定义S为A^B所有的自然因子的和,求出S mod 9901的值. 题解:了解下以下知识点 1.整数的唯一分解定理 任意正整数都有且只有唯一的方式 ...
随机推荐
- 5G套餐资费或为199元至599元,高昂价格会阻碍大众使用热情吗?
近段时间,运营商各种谜一般的操作让其走上舆论的风口浪尖,成为人们口诛笔伐的对象.比如在前段时间,运营商相继宣布要取消"达量降速版畅享套餐",对用户的权益造成巨大冲击,引发了网络热议 ...
- laravel如何A表中包含B表中信息
A表中如何包含B表中的信息 首先看A表的信息 接着看B表的信息 我的需求就是 A表字段name对应B表字段ream_name然后得到B表的对应主键ID要在A表中查询出来 发现问题就是查询出来的id和A ...
- 第一个Mybatis项目
第一个Mybatis项目 一.创建普通Maven项目 1.配置pom.xml文件 <dependencies> <!--mysql驱动--> <dependency> ...
- rf关键字
1.获取字典中的key ${b} Set Variable ${a}[0][dealer_buy_price] Log ${b} 2.${b}的float类型转换string 再和后面比较 Sho ...
- 本地cmd连接远程mysql数据库
一.登录远程mysql 输入mysql -h要远程的IP地址 -u设置的MySQL用户名 -p登录用户密码 例如:mysql -h 192.168.1.139 -u root -p dorlocald ...
- python selenium设计模式POM
POM模式是什么 页面对象模型(POM)是一种设计模式,用来管理维护一组web元素集的对象库 在POM模式下,应用程序的每一个页面都有一个对的page class 每一个page class维护着该w ...
- 题解 【Codeforces489B】 BerSU Ball
本题是排序基础题. 我们可以将a[i].b[i]分别从小到大排序后,依次枚举比较两两组合是否符合要求,最后输出答案ans即可. AC代码: #include <bits/stdc++.h> ...
- zabbix_agentd无法启动,cannot open log 错误
最近有一台服务器的zabbix启动异常,看日志有如下报错 zabbix_agentd []: cannot open log: cannot create semaphore ] No space l ...
- 【转载】C/C++预处理器
转自:http://www.cnblogs.com/lidabo/archive/2012/08/27/2658909.html C/C++编译系统编译程序的过程为预处理.编译.链接.预处理器是在程序 ...
- mediasoup-demo安装记录
环境CentOS 7 64位 VMWare12虚拟机(win10主机),安装好NodeJS 10.13(大于8.9就可以) 已按照GitHub说明拉下来代码,配置好Node环境,开始执行npm sta ...