POJ - 1845 Sumdiv(分治)
题意:求$A^{B}$的所有约数之和$mod\ 9901$
思路:由结论有,一个数$n$进行质因数分解得到$n={p_{1}}^{c_{1}} * {p_{2}}^{c_{2}} *...* {p_{k}}^{c_{k}}$,那么$n$的约数之和为
$$sum=(1+{p_{1}}^{1}+\cdots+{p_{1}}^{c_{1}})*(1+{p_{2}}^{1}+\cdots +{p_{2}}^{c_{2}})*\cdots*(1+{p_{k}}^{1}+\cdots+{p_{k}}^{c_{k}})$$
所以对$A$质因数分解后,那么$A^{B}$的约数之和
$$sum=(1+{p_{1}}^{1}+\cdots+{p_{1}}^{B*c_{1}})*(1+{p_{2}}^{1}+\cdots +{p_{2}}^{B*c_{2}})*\cdots*(1+{p_{k}}^{1}+\cdots+{p_{k}}^{B*c_{k}})$$
上式中每个括号内都是等比数列,利用分治法对等比数列求和,设$sum(p,c)=1+p+p^2+\cdots+p^{c}$
当$c$为奇数时
$$sum(p,c)=(1+p+\cdots+p^{\frac{c-1}{2}})+(p^{\frac{c+1}{2}}+\cdots+p^c)=(1+p^{\frac{c+1}{2}})*sum(p,\frac{c-1}{2})$$
当$c$为偶数时
$$sum(p,c)=(1+p+\cdots+p^{\frac{c}{2}-1})+(p^{\frac{c}{2}}+p^{\frac{c}{2}+1}\cdots+p^{c-1})+p^c=(1+p^{\frac{c}{2}})*sum(p,\frac{c}{2}-1)+p^c$$
当$c$等于$0$,结束递归, 返回$1$即可
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cmath> using namespace std; typedef long long ll; const int N = ;
const ll mod = ; ll a, b;
ll p[N], c[N], m; void divide(ll n)
{
m = ;
for (ll i = ; i <= sqrt(n); i++) {
if ( == n % i) {
p[++m] = i, c[m] = ;
while ( == n % i) n /= i, c[m]++;
}
}
if (n > ) p[++m] = n, c[m] = ;
return;
} ll power(ll a, ll b, ll p)
{
ll res = ;
while (b) {
if (b & ) res = (res * a) % p;
a = (a * a) % p, b >>= ;
}
return res % p;
} ll sum(ll p, ll c)
{
if ( == c) return ;
if ( == c % ) {
ll tp1 = ( + power(p, (c + ) / , mod)) % mod;
ll tp2 = sum(p, (c - ) / ) % mod;
return tp1 * tp2 % mod;
}
else {
ll tp1 = ( + power(p, c / , mod)) % mod;
ll tp2 = sum(p, c / - ) % mod;
return (tp1 * tp2 % mod + power(p, c, mod)) % mod;
}
} int main()
{
scanf("%lld%lld", &a, &b);
divide(a);
if ( == a) printf("0\n");
else {
ll res = ;
for (int i = ; i <= m; i++)
res = res * sum(p[i], b * c[i]) % mod;
printf("%lld\n", res);
}
return ;
}
POJ - 1845 Sumdiv(分治)的更多相关文章
- poj 1845 POJ 1845 Sumdiv 数学模板
筛选法+求一个整数的分解+快速模幂运算+递归求计算1+p+p^2+````+p^nPOJ 1845 Sumdiv求A^B的所有约数之和%9901 */#include<stdio.h>#i ...
- poj 1845 Sumdiv 约数和定理
Sumdiv 题目连接: http://poj.org/problem?id=1845 Description Consider two natural numbers A and B. Let S ...
- POJ 1845 Sumdiv 【二分 || 逆元】
任意门:http://poj.org/problem?id=1845. Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions ...
- POJ 1845 Sumdiv#质因数分解+二分
题目链接:http://poj.org/problem?id=1845 关于质因数分解,模板见:http://www.cnblogs.com/atmacmer/p/5285810.html 二分法思想 ...
- poj 1845 Sumdiv (等比求和+逆元)
题目链接:http://poj.org/problem?id=1845 题目大意:给出两个自然数a,b,求a^b的所有自然数因子的和模上9901 (0 <= a,b <= 50000000 ...
- POJ 1845 Sumdiv [素数分解 快速幂取模 二分求和等比数列]
传送门:http://poj.org/problem?id=1845 大致题意: 求A^B的所有约数(即因子)之和,并对其取模 9901再输出. 解题基础: 1) 整数的唯一分解定理: 任意正整数都有 ...
- POJ 1845 Sumdiv
快速幂+等比数列求和.... Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 12599 Accepted: 305 ...
- POJ 1845 Sumdiv 【逆元】
题意:求A^B的所有因子之和 很容易知道,先把分解得到,那么得到,那么 的所有因子和的表达式如下 第一种做法是分治求等比数列的和 用递归二分求等比数列1+pi+pi^2+pi^3+...+pi^n: ...
- POJ 1845 Sumdiv(逆元)
题目链接:Sumdiv 题意:给定两个自然数A,B,定义S为A^B所有的自然因子的和,求出S mod 9901的值. 题解:了解下以下知识点 1.整数的唯一分解定理 任意正整数都有且只有唯一的方式 ...
随机推荐
- [一本通学习笔记] AC自动机
AC自动机可以看作是在Trie树上建立了fail指针,在这里可以看作fail链.如果u的fail链指向v,那么v的对应串一定是u对应串在所给定字符串集合的后缀集合中的最长的后缀. 我们考虑一下如何实现 ...
- Shell的 for 循环小例子
<1> 上例子 for i in f1 f2 f3; do @echo $i; done 执行结果: f1 f2 f3 但是,请注意:如果是在makefile 中写,要写成这个样子: al ...
- windows10 +ubuntu双系统
1,安装之前的准备: 制作启动盘 确定给ubuntu多少分区并且清理为free状态 确定电脑的开机引导方式,传统方式引号和uefi引导并不一样,因此我们需要根据引导方式选择新系统制作什么样的启动盘 在 ...
- wamp配置本地多站点。
' 进入C:\wamp64\wamp64\bin\apache\apache2.4.37\conf\http.conf 首先确保httpd-vhosts.conf扩展文件引入进来了,部分版本默认是不引 ...
- 文件上传plupload组件使用
这段时间一直在使用文件上传,简要的介绍一下文件上传的组件使用,先上一段代码. var uploader = new plupload.Uploader( { //用来指定上传方式,指定多个上传方式请使 ...
- 【13】堆排序 最小K个数
题目 输入整数数组 arr ,找出其中最小的 k 个数.例如,输入4.5.1.6.2.7.3.8这8个数字,则最小的4个数字是1.2.3.4. 收获 优先队列实现 (n1,n2)->n2-n1是 ...
- testng实现代码和数据分层
todo: 参考: https://www.cnblogs.com/znicy/p/6534893.html
- linux下grep分析apache日志的命令集合
https://my.oschina.net/hmc0316/blog/112004 实例:月份英文简写英文全称一月Jan.January二月Feb.February三月Mar.March四月Apr. ...
- RTMP 协议规范(中文版)
本文是为截至发稿时止最新 Adobe 官方公布的 RTMP 规范.本文包含 RTMP 规范的全部内容.是第一个比较全面的 RTMP 规范的中译本.由于成文时间仓促,加上作者知识面所限,翻译错误之处在所 ...
- java中的try-catch-finally中的return的执行顺序
在这里看到了try catch finally块中含有return语句时程序执行的几种情况,但其实总结的并不全,而且分析的比较含糊.但有一点是可以肯定的,finally块中的内容会先于try中的ret ...