题意:求$A^{B}$的所有约数之和$mod\ 9901$

思路:由结论有,一个数$n$进行质因数分解得到$n={p_{1}}^{c_{1}} * {p_{2}}^{c_{2}} *...* {p_{k}}^{c_{k}}$,那么$n$的约数之和为

$$sum=(1+{p_{1}}^{1}+\cdots+{p_{1}}^{c_{1}})*(1+{p_{2}}^{1}+\cdots +{p_{2}}^{c_{2}})*\cdots*(1+{p_{k}}^{1}+\cdots+{p_{k}}^{c_{k}})$$

所以对$A$质因数分解后,那么$A^{B}$的约数之和

$$sum=(1+{p_{1}}^{1}+\cdots+{p_{1}}^{B*c_{1}})*(1+{p_{2}}^{1}+\cdots +{p_{2}}^{B*c_{2}})*\cdots*(1+{p_{k}}^{1}+\cdots+{p_{k}}^{B*c_{k}})$$

上式中每个括号内都是等比数列,利用分治法对等比数列求和,设$sum(p,c)=1+p+p^2+\cdots+p^{c}$

当$c$为奇数时

$$sum(p,c)=(1+p+\cdots+p^{\frac{c-1}{2}})+(p^{\frac{c+1}{2}}+\cdots+p^c)=(1+p^{\frac{c+1}{2}})*sum(p,\frac{c-1}{2})$$

当$c$为偶数时

$$sum(p,c)=(1+p+\cdots+p^{\frac{c}{2}-1})+(p^{\frac{c}{2}}+p^{\frac{c}{2}+1}\cdots+p^{c-1})+p^c=(1+p^{\frac{c}{2}})*sum(p,\frac{c}{2}-1)+p^c$$

当$c$等于$0$,结束递归, 返回$1$即可

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cmath> using namespace std; typedef long long ll; const int N = ;
const ll mod = ; ll a, b;
ll p[N], c[N], m; void divide(ll n)
{
m = ;
for (ll i = ; i <= sqrt(n); i++) {
if ( == n % i) {
p[++m] = i, c[m] = ;
while ( == n % i) n /= i, c[m]++;
}
}
if (n > ) p[++m] = n, c[m] = ;
return;
} ll power(ll a, ll b, ll p)
{
ll res = ;
while (b) {
if (b & ) res = (res * a) % p;
a = (a * a) % p, b >>= ;
}
return res % p;
} ll sum(ll p, ll c)
{
if ( == c) return ;
if ( == c % ) {
ll tp1 = ( + power(p, (c + ) / , mod)) % mod;
ll tp2 = sum(p, (c - ) / ) % mod;
return tp1 * tp2 % mod;
}
else {
ll tp1 = ( + power(p, c / , mod)) % mod;
ll tp2 = sum(p, c / - ) % mod;
return (tp1 * tp2 % mod + power(p, c, mod)) % mod;
}
} int main()
{
scanf("%lld%lld", &a, &b);
divide(a);
if ( == a) printf("0\n");
else {
ll res = ;
for (int i = ; i <= m; i++)
res = res * sum(p[i], b * c[i]) % mod;
printf("%lld\n", res);
}
return ;
}

POJ - 1845 Sumdiv(分治)的更多相关文章

  1. poj 1845 POJ 1845 Sumdiv 数学模板

    筛选法+求一个整数的分解+快速模幂运算+递归求计算1+p+p^2+````+p^nPOJ 1845 Sumdiv求A^B的所有约数之和%9901 */#include<stdio.h>#i ...

  2. poj 1845 Sumdiv 约数和定理

    Sumdiv 题目连接: http://poj.org/problem?id=1845 Description Consider two natural numbers A and B. Let S ...

  3. POJ 1845 Sumdiv 【二分 || 逆元】

    任意门:http://poj.org/problem?id=1845. Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions ...

  4. POJ 1845 Sumdiv#质因数分解+二分

    题目链接:http://poj.org/problem?id=1845 关于质因数分解,模板见:http://www.cnblogs.com/atmacmer/p/5285810.html 二分法思想 ...

  5. poj 1845 Sumdiv (等比求和+逆元)

    题目链接:http://poj.org/problem?id=1845 题目大意:给出两个自然数a,b,求a^b的所有自然数因子的和模上9901 (0 <= a,b <= 50000000 ...

  6. POJ 1845 Sumdiv [素数分解 快速幂取模 二分求和等比数列]

    传送门:http://poj.org/problem?id=1845 大致题意: 求A^B的所有约数(即因子)之和,并对其取模 9901再输出. 解题基础: 1) 整数的唯一分解定理: 任意正整数都有 ...

  7. POJ 1845 Sumdiv

    快速幂+等比数列求和.... Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 12599 Accepted: 305 ...

  8. POJ 1845 Sumdiv 【逆元】

    题意:求A^B的所有因子之和 很容易知道,先把分解得到,那么得到,那么 的所有因子和的表达式如下 第一种做法是分治求等比数列的和  用递归二分求等比数列1+pi+pi^2+pi^3+...+pi^n: ...

  9. POJ 1845 Sumdiv(逆元)

    题目链接:Sumdiv 题意:给定两个自然数A,B,定义S为A^B所有的自然因子的和,求出S mod 9901的值. 题解:了解下以下知识点   1.整数的唯一分解定理 任意正整数都有且只有唯一的方式 ...

随机推荐

  1. CSS的长度单位

    对于css的长度单位真的有必要知道一下.那么css长度单位有哪些呢? 分成两大类: 1.绝对单位:不会因为其他元素的尺寸变化而变化.坚持自我. 2.相对单位:没有一个确定的值,而是由其他元素的尺寸影响 ...

  2. C# LINQ GroupBy

    一.先准备要使用的类: 1.Person类: class Person { public string Name { set; get; } public int Age { set; get; } ...

  3. 图像滤波—opencv函数

      函数原型 方框滤波 ,-), bool normalize = true, int borderType = BORDER_DEFAULT) 均值滤波 ,-), int borderType = ...

  4. L2-3 名人堂与代金券

    题解 这题的话,每一个人都要占一个排名,即使排名并列了. 对于最后一个排名来说,即使人数超过了指定的k,也要加入. 代码 #include <bits/stdc++.h> using na ...

  5. HBase 中 Memstore-Local Allocation Buffer

    在0.90 版本后的 HBase,引入了一个高级机制用于缓解堆内存碎片的问题.此内存碎片问题的产生的主要原因是由于 memstore 上的扰动(频繁的分配与释放内存空间)导致.对应解决此问题的机制为M ...

  6. 文件上传plupload组件使用

    这段时间一直在使用文件上传,简要的介绍一下文件上传的组件使用,先上一段代码. var uploader = new plupload.Uploader( { //用来指定上传方式,指定多个上传方式请使 ...

  7. CentOS 7下用firewall-cmd控制端口与端口转发

    # 将80端口的流量转发至192.168.0.1的8080端口 1.firewall-cmd --permanent --add-forward-port=port=80:proto=tcp:toad ...

  8. 并发队列 ConcurrentLinkedQueue 及 BlockingQueue 接口实现的四种队列

    队列是一种特殊的线性表,它只允许在表的前端(front)进行删除操作,而在表的后端(rear)进行插入操作.进行插入操作的端称为队尾,进行删除操作的端称为队头.队列中没有元素时,称为空队列. 在队列这 ...

  9. 【Python】摄氏度与华氏度互相转化

    Python入门程序,大家可以举一反三,进行各种转换,比如单位转化,货币转化等等,自行发挥即可! 原理:  代码: Tempstr=input("请输入带有符号的温度值:\n")# ...

  10. Hibernate知识点整理

    一, Hibernate 介绍: Hibernate 只是一个将持久化类与数据库表相映射的工具,每个持久化类实例均对应于数据库表中的一个数据行而已.用户只需直接使用面向对象的方法操作此持久化类实例,即 ...