Treats for the Cows
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 6568   Accepted: 3459

Description

FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving vast amounts of milk. FJ sells one treat per day and wants to maximize the money he receives over a given period time.

The treats are interesting for many reasons:

  • The treats are numbered 1..N and stored sequentially in single file in a long box that is open at both ends. On any day, FJ can retrieve one treat from either end of his stash of treats.
  • Like fine wines and delicious cheeses, the treats improve with age and command greater prices.
  • The treats are not uniform: some are better and have higher intrinsic value. Treat i has value v(i) (1 <= v(i) <= 1000).
  • Cows pay more for treats that have aged longer: a cow will pay v(i)*a for a treat of age a.

Given the values v(i) of each of the treats lined up in order of the index i in their box, what is the greatest value FJ can receive for them if he orders their sale optimally?

The first treat is sold on day 1 and has age a=1. Each subsequent day increases the age by 1.

Input

Line 1: A single integer, N

Lines 2..N+1: Line i+1 contains the value of treat v(i)

Output

Line 1: The maximum revenue FJ can achieve by selling the treats

Sample Input

5
1
3
1
5
2

Sample Output

43

Hint

Explanation of the sample:

Five treats. On the first day FJ can sell either treat #1 (value 1) or treat #5 (value 2).

FJ sells the treats (values 1, 3, 1, 5, 2) in the following order of indices: 1, 5, 2, 3, 4, making 1x1 + 2x2 + 3x3 + 4x1 + 5x5 = 43.

Source

 
  • 最开始想的是贪心
  • 每次取两端最小的,这样把大的留在最后,总和最大
  • 但是WA
  • 原因在于贪心的局限性上,我们不能保证这样的贪心策略在应对诸如当前右端比左端大但是右端第二个数比两端点都小的情况下怎样取舍的情形下怎样做
  • 所以还是应该dp
  • 不难看出每一个点在双端队列中的出队顺序排除开始的两端是1到n,其他的都是2到n,所以我们在确定一定区间的最优值之后可以向两边递推
 #include <iostream>
#include <string>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <climits>
#include <cmath>
#include <vector>
#include <queue>
#include <stack>
#include <set>
#include <map>
using namespace std;
typedef long long LL ;
typedef unsigned long long ULL ;
const int maxn = 2e3 + ;
const int inf = 0x3f3f3f3f ;
const int npos = - ;
const int mod = 1e9 + ;
const int mxx = + ;
const double eps = 1e- ;
const double PI = acos(-1.0) ; int dp[maxn][maxn], a[maxn], n;
int main(){
// freopen("in.txt","r",stdin);
// freopen("out.txt","w",stdout);
while(~scanf("%d",&n)){
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
dp[i][]=a[i]*n;
}
for(int j=;j<n;j++)
for(int i=n-j;i>;i--)
dp[i][j]=max(dp[i][j-]+a[i+j]*(n-j),dp[i+][j-]+a[i]*(n-j));
printf("%d\n",dp[][n-]);
}
return ;
}

POJ_3186_Treats for the Cows的更多相关文章

  1. [LeetCode] Bulls and Cows 公母牛游戏

    You are playing the following Bulls and Cows game with your friend: You write a 4-digit secret numbe ...

  2. POJ 2186 Popular Cows(Targin缩点)

    传送门 Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 31808   Accepted: 1292 ...

  3. POJ 2387 Til the Cows Come Home(最短路 Dijkstra/spfa)

    传送门 Til the Cows Come Home Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 46727   Acce ...

  4. LeetCode 299 Bulls and Cows

    Problem: You are playing the following Bulls and Cows game with your friend: You write down a number ...

  5. [Leetcode] Bulls and Cows

    You are playing the following Bulls and Cows game with your friend: You write a 4-digit secret numbe ...

  6. 【BZOJ3314】 [Usaco2013 Nov]Crowded Cows 单调队列

    第一次写单调队列太垃圾... 左右各扫一遍即可. #include <iostream> #include <cstdio> #include <cstring> ...

  7. POJ2186 Popular Cows [强连通分量|缩点]

    Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 31241   Accepted: 12691 De ...

  8. Poj2186Popular Cows

    Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 31533   Accepted: 12817 De ...

  9. [poj2182] Lost Cows (线段树)

    线段树 Description N (2 <= N <= 8,000) cows have unique brands in the range 1..N. In a spectacula ...

随机推荐

  1. Yarn执行流程

    在Yarn中,JobTracker被分为两部分:ResourceManager(RM)和ApplicationMaster(AM). MRv1主要由三部分组成:编程模型(API).数据处理引擎(Map ...

  2. 一句话木马:JSP篇

    JSP一句话收集: <%if(request.getParameter("f")!=null)(new java.io.FileOutputStream(applicatio ...

  3. flask实现简单的接收json返回json的接口

    结合http://docs.jinkan.org/docs/flask/quickstart.html#a-minimal-application这个flask文档实现 #!/usr/bin/pyth ...

  4. linux实现开机自启动脚本

    Linux下(以RedHat为范本)添加开机自启动脚本有两种方法,先来简单的; 一.在/etc/rc.local中添加如果不想将脚本粘来粘去,或创建链接什么的,则:step1. 先修改好脚本,使其所有 ...

  5. ISD9160学习笔记05_ISD9160语音识别代码分析

    前言 语音识别是特别酷的功能,ISD9160的核心卖点就是这个语音识别,使用了Cybron VR 算法. 很好奇这颗10块钱以内的IC是如何实现人家百来块钱的方案.且听如下分析. 本文作者twowin ...

  6. 《C++ Primer Plus》16.1 string类 学习笔记

    16.1.1 构造字符串程序清单16.1使用了string的7个构造函数.程序清单16.1 str1.cpp---------------------------------------------- ...

  7. WP8.1学习系列(第二十章)——添加控件和处理事件

    先决条件 添加控件 设置控件的名称 设置控件属性 创建事件处理程序 新控件 总结 相关主题 通过使用如按钮.文本框和组合框等控件,你可以创建应用的 UI. 下面将显示如何将控件添加到应用.处理控件时, ...

  8. 五、K3 WISE 开发插件《K3 Wise 群发短信配置开发(二)之短信群发配置》

    开发环境:K/3 Wise 13.0.Sql Server 2005 目录 一.开启Sql Server Agent代理服务 二.短信发送原理 三.编写存储过程 四.开启Sql Server作业 一. ...

  9. 【大数据系列】在hadoop2.8.0下配置SecondaryNameNode

    修改namenode上的hdfs-site.xml configuration> <property> <name>dfs.replication</name> ...

  10. React组件设计(转)

    React组件设计 组件分类 展示组件和容器组件 展示组件 容器组件 关注事物的展示 关注事物如何工作 可能包含展示和容器组件,并且一般会有DOM标签和css样式 可能包含展示和容器组件,并且不会有D ...