Treats for the Cows
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 6568   Accepted: 3459

Description

FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving vast amounts of milk. FJ sells one treat per day and wants to maximize the money he receives over a given period time.

The treats are interesting for many reasons:

  • The treats are numbered 1..N and stored sequentially in single file in a long box that is open at both ends. On any day, FJ can retrieve one treat from either end of his stash of treats.
  • Like fine wines and delicious cheeses, the treats improve with age and command greater prices.
  • The treats are not uniform: some are better and have higher intrinsic value. Treat i has value v(i) (1 <= v(i) <= 1000).
  • Cows pay more for treats that have aged longer: a cow will pay v(i)*a for a treat of age a.

Given the values v(i) of each of the treats lined up in order of the index i in their box, what is the greatest value FJ can receive for them if he orders their sale optimally?

The first treat is sold on day 1 and has age a=1. Each subsequent day increases the age by 1.

Input

Line 1: A single integer, N

Lines 2..N+1: Line i+1 contains the value of treat v(i)

Output

Line 1: The maximum revenue FJ can achieve by selling the treats

Sample Input

  1. 5
  2. 1
  3. 3
  4. 1
  5. 5
  6. 2

Sample Output

  1. 43

Hint

Explanation of the sample:

Five treats. On the first day FJ can sell either treat #1 (value 1) or treat #5 (value 2).

FJ sells the treats (values 1, 3, 1, 5, 2) in the following order of indices: 1, 5, 2, 3, 4, making 1x1 + 2x2 + 3x3 + 4x1 + 5x5 = 43.

Source

 
  • 最开始想的是贪心
  • 每次取两端最小的,这样把大的留在最后,总和最大
  • 但是WA
  • 原因在于贪心的局限性上,我们不能保证这样的贪心策略在应对诸如当前右端比左端大但是右端第二个数比两端点都小的情况下怎样取舍的情形下怎样做
  • 所以还是应该dp
  • 不难看出每一个点在双端队列中的出队顺序排除开始的两端是1到n,其他的都是2到n,所以我们在确定一定区间的最优值之后可以向两边递推
  1. #include <iostream>
  2. #include <string>
  3. #include <cstdio>
  4. #include <cstring>
  5. #include <algorithm>
  6. #include <climits>
  7. #include <cmath>
  8. #include <vector>
  9. #include <queue>
  10. #include <stack>
  11. #include <set>
  12. #include <map>
  13. using namespace std;
  14. typedef long long LL ;
  15. typedef unsigned long long ULL ;
  16. const int maxn = 2e3 + ;
  17. const int inf = 0x3f3f3f3f ;
  18. const int npos = - ;
  19. const int mod = 1e9 + ;
  20. const int mxx = + ;
  21. const double eps = 1e- ;
  22. const double PI = acos(-1.0) ;
  23.  
  24. int dp[maxn][maxn], a[maxn], n;
  25. int main(){
  26. // freopen("in.txt","r",stdin);
  27. // freopen("out.txt","w",stdout);
  28. while(~scanf("%d",&n)){
  29. for(int i=;i<=n;i++){
  30. scanf("%d",&a[i]);
  31. dp[i][]=a[i]*n;
  32. }
  33. for(int j=;j<n;j++)
  34. for(int i=n-j;i>;i--)
  35. dp[i][j]=max(dp[i][j-]+a[i+j]*(n-j),dp[i+][j-]+a[i]*(n-j));
  36. printf("%d\n",dp[][n-]);
  37. }
  38. return ;
  39. }

POJ_3186_Treats for the Cows的更多相关文章

  1. [LeetCode] Bulls and Cows 公母牛游戏

    You are playing the following Bulls and Cows game with your friend: You write a 4-digit secret numbe ...

  2. POJ 2186 Popular Cows(Targin缩点)

    传送门 Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 31808   Accepted: 1292 ...

  3. POJ 2387 Til the Cows Come Home(最短路 Dijkstra/spfa)

    传送门 Til the Cows Come Home Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 46727   Acce ...

  4. LeetCode 299 Bulls and Cows

    Problem: You are playing the following Bulls and Cows game with your friend: You write down a number ...

  5. [Leetcode] Bulls and Cows

    You are playing the following Bulls and Cows game with your friend: You write a 4-digit secret numbe ...

  6. 【BZOJ3314】 [Usaco2013 Nov]Crowded Cows 单调队列

    第一次写单调队列太垃圾... 左右各扫一遍即可. #include <iostream> #include <cstdio> #include <cstring> ...

  7. POJ2186 Popular Cows [强连通分量|缩点]

    Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 31241   Accepted: 12691 De ...

  8. Poj2186Popular Cows

    Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 31533   Accepted: 12817 De ...

  9. [poj2182] Lost Cows (线段树)

    线段树 Description N (2 <= N <= 8,000) cows have unique brands in the range 1..N. In a spectacula ...

随机推荐

  1. grid布局合并单元格

    参考:http://www.w3cplus.com/css3/css-grid-layout-merge-cells.html <!DOCTYPE html> <html lang= ...

  2. 找不同diff-打补丁patch

    Q:为什么要找不同,为什么要打补丁? A: 在Linux应用中,作为DBA,我们知道MySQL跑在Linux系统之上,数据库最重要的追求就是性能,“稳”是重中之重,所以不能动不动就是换系统或是换这换那 ...

  3. 【代码审计】iZhanCMS_v2.1 前台GoodsController.php页面存在SQL注入漏洞分析

      0x00 环境准备 iZhanCMS官网:http://www.izhancms.com 网站源码版本:爱站CMS(zend6.0) V2.1 程序源码下载:http://www.izhancms ...

  4. Sharepoint文档的CAML分页及相关筛选记录

    写这篇文章的初衷是因为其他的业务系统要调用sharepoint的文档库信息,使其他的系统也可以获取sharepoint文档库的信息列表.在这个过程中尝试过用linq to sharepoint来获取文 ...

  5. vmware下虚拟机不能上网问题解决

    这个问题困扰了好久,vmware下装的虚拟机可以通过DHCP获取单独IP,但当用到管控较严格的环境,需要它与主机共享IP时,就不好使了. 今天在一篇文章中找到答案,如下图,windows系统中要启动V ...

  6. 解决16bit压缩贴图失真问题

    选择索引模式

  7. 资源打包Assetbundle .

    在手游的运营过程中,更新资源是比不可少的.资源管理第一步是资源打包.传统的打包可以将所有物件制成预设Prefab,打包成场景.今天我们来一起学习官方推荐的Assetbundle,它是Unity(Pro ...

  8. Python中字符串的intern机制

    intern机制: 字符串类型作为Python中最常用的数据类型之一,Python解释器为了提高字符串使用的效率和使用性能,做了很多优化,例如:Python解释器中使用了 intern(字符串驻留)的 ...

  9. iptraf:一个实用的TCP/UDP网络监控工具

    iptraf是一个基于ncurses的IP局域网监控器,用来生成包括TCP信息.UDP计数.ICMP和OSPF信息.以太网负载信息.节点状态信息.IP校验和错误等等统计数据. 它基于ncurses的用 ...

  10. GCC 编译详解[转]

    转自http://www.cnblogs.com/azraelly/archive/2012/07/07/2580839.html GNU CC(简称为Gcc)是GNU项目中符合ANSI C标准的编译 ...