Tarjan-LCA算法小记
Tarjan-LCA算法是一种离线算法。
算法描述:
DFS遍历每个节点,对于遍历到的当前节点u:
①建立以u为代表元素的集合。
②遍历与u相连的节点v,如果没有被访问过,对于v使用Tarjan-LCA算法,结束后,将v的集合并入u的集合。
③对于与u有关的询问Query(u,v),如果v被访问过,则LCA(u,v)为v所在集合的代表元素。
代码模板:
const int maxn=; //节点数
const int maxm=; //边数
const int maxq=; //查询数 int par[maxn];
int find(int x){return (par[x]==x)?x:(par[x]=find(par[x]));} struct Edge{
int u,v;
Edge(int u=,int v=){this->u=u,this->v=v;}
};
vector<Edge> E;
vector<int> Ge[maxn];
void addedge(int u,int v)
{
E.push_back(Edge(u,v));
Ge[u].push_back(E.size()-);
} struct Query{
int u,v;
int lca;
Query(int u=,int v=,int lca=){this->u=u,this->v=v,this->lca=lca;}
};
vector<Query> Q;
vector<int> Gq[maxn];
void addquery(int u,int v,int lca)
{
Q.push_back(Query(u,v,lca));
Gq[u].push_back(Q.size()-);
} bool vis[maxn];
void LCA(int u)
{
par[u]=u; //建立以u为代表元素的集合
vis[u]=;
for(int i=;i<Ge[u].size();i++)
{
Edge &e=E[Ge[u][i]]; int v=e.v;
if(!vis[v])
{
LCA(v);
par[v]=u; //将v的集合并入u的集合
}
}
for(int i=;i<Gq[u].size();i++)
{
Query &q=Q[Gq[u][i]]; int v=q.v;
if(vis[v])
{
q.lca=find(v);
Q[Gq[u][i]^].lca=q.lca;
}
}
}
时间复杂度:
DFS遍历图O(n),枚举查询O(q),总的就是O(n+q)。
Tarjan-LCA算法小记的更多相关文章
- LCA问题的ST,tarjan离线算法解法
一 ST算法与LCA 介绍 第一次算法笔记这样的东西,以前学算法只是笔上画画写写,理解了下,刷几道题,其实都没深入理解,以后遇到新的算法要把自己的理解想法写下来,方便日后回顾嘛>=< R ...
- LCA最近公共祖先(Tarjan离线算法)
这篇博客对Tarjan算法的原理和过程模拟的很详细. 转载大佬的博客https://www.cnblogs.com/JVxie/p/4854719.html 第二次更新,之前转载的博客虽然胜在详细,但 ...
- LCA(最近公共祖先)--tarjan离线算法 hdu 2586
HDU 2586 How far away ? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/ ...
- 【图论】tarjan的离线LCA算法
百度百科 Definition&Solution 对于求树上\(u\)和\(v\)两点的LCA,使用在线倍增可以做到\(O(nlogn)\)的复杂度.在NOIP这种毒瘤卡常比赛中,为了代码的效 ...
- 最近公共祖先LCA Tarjan 离线算法
[简介] 解决LCA问题的Tarjan算法利用并查集在一次DFS(深度优先遍历)中完成所有询问.换句话说,要所有询问都读入后才开始计算,所以是一种离线的算法. [原理] 先来看这样一个性质:当两个节点 ...
- LCA 最近公共祖先 Tarjan(离线)算法的基本思路及其算法实现
首先是最近公共祖先的概念(什么是最近公共祖先?): 在一棵没有环的树上,每个节点肯定有其父亲节点和祖先节点,而最近公共祖先,就是两个节点在这棵树上深度最大的公共的祖先节点. 换句话说,就是两个点在这棵 ...
- HDU-2586-How far away(LCA Tarjan离线算法)
链接:https://vjudge.net/problem/HDU-2586 题意: 勇气小镇是一个有着n个房屋的小镇,为什么把它叫做勇气小镇呢,这个故事就要从勇气小镇成立的那天说起了,修建小镇的时候 ...
- hdu 5286 How far away ? tarjan/lca
How far away ? Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pi ...
- LCA算法
LCA算法: LCA(Least Common Ancestor),顾名思义,是指在一棵树中,距离两个点最近的两者的公共节点.也就是说,在两个点通往根的道路上,肯定会有公共的节点,我们就是要求找到公共 ...
- Tarjan+LCA【洛谷P2783】 有机化学之神偶尔会做作弊
[洛谷P2783] 有机化学之神偶尔会做作弊 题目背景 XS中学化学竞赛组教练是一个酷爱炉石的人. 有一天他一边搓炉石一边监考,而你作为一个信息竞赛的大神也来凑热闹. 然而你的化竞基友却向你求助了. ...
随机推荐
- MAP参数估计
(学习这部分内容大约需要40分钟) 摘要 在贝叶斯参数估计中, 除了先验是特别选定的情况下, 通常要积分掉所有模型参数是没有解析解的. 在这种情况下, 最大后验(maximum a posterior ...
- PHP+Oracle Instant Client
<?php <b>●Oracleとの接続テスト</b> <hr> <?php // Oracleとの接続 $conn = OCILogon(" ...
- Linux+Redis实战教程_day03_Redis-set【重点】_有序set(了解)
2.redis-set[重点] Java HashSet 无序,不重复. Redis操作中,涉及到两个大数据集合的并集,交集,差集运算. 赋值: l sadd key values[value1.v ...
- RESTful api架构设计
阮老师的这两篇文章足够了 理解 RESTful 架构 RESTful API 设计指南
- PostgreSQL存储过程(1)-基于SQL的存储过程
什么是SQL函数? SQL函数包体是一些可执行的SQL语言.同时包含1条以上的查询,但是函数只返回最后一个查询(必须是SELECT)的结果. 除非SQL函数声明为返回void,否则最后一条语句必须是S ...
- SpringBoot(八)-- 日志
一.介绍 SpringBoot内部使用Commons Logging来记录日志,但也保留外部接口可以让一些日志框架来进行实现,例如Java Util Logging,Log4J2还有Logback.如 ...
- hive 安装记录
http://www.cnblogs.com/linjiqin/archive/2013/03/04/2942402.html
- Elasticsearch 5.x 关于term query和match query的认识
http://blog.csdn.net/yangwenbo214/article/details/54142786 一.基本情况 前言:term query和match query牵扯的东西比较多, ...
- 敏感词过滤和XML的创建
今天我慢下来啦,因为这三天没有新的课程学习内容,自己仅仅看啦一些,这让我停下来栖息片刻:说说现在的生活,简单的进行着,每天要奔波着去上课,然后回来,每天都在想怎样学习这个小知识点,大脑也在想怎样解决程 ...
- vc 关于局部刷新
在绘制图像对象的时候,时刻获取其所占范围大小,并使用InvalidateRect( m_rectRefresh);刷新,但是光这样还是不行的要在onDraw()函数里获取PAINTSTRUCT结构的无 ...