Round Numbers

The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, Paper, Stone' (also known as 'Rock, Paper, Scissors', 'Ro, Sham, Bo', and a host of other names) in order to make arbitrary decisions such as who gets to be milked first.
They can't even flip a coin because it's so hard to toss using hooves.

They have thus resorted to "round number" matching. The first cow picks an integer less than two billion. The second cow does the same. If the numbers are both "round numbers", the first cow wins,

otherwise the second cow wins.

A positive integer N is said to be a "round number" if the binary representation of N has as many or more zeroes than it has ones. For example, the integer 9, when written in binary form, is 1001. 1001 has two zeroes and two ones; thus,
9 is a round number. The integer 26 is 11010 in binary; since it has two zeroes and three ones, it is not a round number.

Obviously, it takes cows a while to convert numbers to binary, so the winner takes a while to determine. Bessie wants to cheat and thinks she can do that if she knows how many "round numbers" are in a given range.

Help her by writing a program that tells how many round numbers appear in the inclusive range given by the input (1 ≤ Start < Finish ≤ 2,000,000,000).

Input

Line 1: Two space-separated integers, respectively Start and Finish.

Output

Line 1: A single integer that is the count of round numbers in the inclusive rangeStart.. Finish

Sample Input

2 12

Sample Output

6

emmm思路总体差不多 就是先把输入转化为二进制,然后固定0的个数 用组合数做

后来没考虑到数不能超出finish卡了一下 再后来感觉有点想混了

原来好像直接就想 算0 的个数比n的位数的一半多就可以了

但是发现小于n的数里面 边界条件也会变化的

看了题解

思路:

先求位数小于n的roundnumber

尽管排列组合,结果肯定不会超过n的

然后算位数刚好等于n的roundnumber

先固定最高位 因为肯定是1 并且不能变动

往下数 后一位如果是0 那么也不能变动

如果是1 那么假设这一位是0 剩下的位数再对剩余的zero的个数进行排列组合

AC代码【poj用c++会挂】

//#include <bits/stdc++.h>
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <string.h>
#include <cstring>
#include <cmath>
#define inf 0x3f3f3f3f
#define ll long long
using namespace std; const int maxn = 35;
int start, finish;
int cntnuma, cntnumb, c[maxn][maxn];
int binarya[maxn], binaryb[maxn]; void Cmn()
{
c[0][0] = c[1][0] = c[1][1] = 1;
for(int i = 2; i < maxn; i++){
c[i][0] = 1;
for(int j = 1; j < i; j++){
c[i][j] = c[i - 1][j] + c[i - 1][j - 1];
}
c[i][i] = 1;
}
} void digtobinary(int n, int *binary)
{
binary[0] = 0;
while(n){
binary[++binary[0]] = n % 2;
n /= 2;
}
return;
} int solve(int n, int *binary)
{
//if(n <= 1) return 0;
//int len = digtobinary(n, binary);
int st;
digtobinary(n, binary); int len = binary[0];
int ans = 0;
//小于len的可以随便填肯定不会超过finish
for(int i = 1; i < len - 1; i++){
//if(i % 2) st = i / 2 + 1;
//else st = i / 2;
for(int j = i / 2 + 1; j <= i; j++){
ans += c[i][j];
}
}
int zero = 0;
//if(len % 2) st = len / 2 + 1;
//else st = len / 2;
for(int i = len - 1; i >= 1; i--){
if(!binary[i]){
zero++;
}
else{
for(int j = (len + 1) / 2 - zero - 1; j <= i - 1; j++){
ans += c[i - 1][j];
}
}
} return ans;
} int main()
{
Cmn();
while(scanf("%d%d",&start,&finish)!= EOF){
int ansa = solve(start, binarya);
int ansb = solve(finish + 1, binaryb);
cout<< ansb - ansa<< endl;
}
return 0;
}

poj3252Round Numbers【组合数】【数位dp】的更多相关文章

  1. BZOJ_3209_花神的数论题_组合数+数位DP

    BZOJ_3209_花神的数论题_组合数+数位DP Description 背景 众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦. 描述 话说花神这天又 ...

  2. Codeforces Round #235 (Div. 2) D. Roman and Numbers (数位dp、状态压缩)

    D. Roman and Numbers time limit per test 4 seconds memory limit per test 512 megabytes input standar ...

  3. CodeForces 55D "Beautiful numbers"(数位DP+离散化处理)

    传送门 参考资料: [1]:CodeForces 55D Beautiful numbers(数位dp&&离散化) 我的理解: 起初,我先定义一个三维数组 dp[ i ][ j ][ ...

  4. Balanced Numbers (数位dp+三进制)

    SPOJ - BALNUM 题意: Balanced Numbers:数位上的偶数出现奇数次,数位上的奇数出现偶数次(比如2334, 2出现1次,4出现1次,3出现两次,所以2334是 Balance ...

  5. Codeforces #55D-Beautiful numbers (数位dp)

    D. Beautiful numbers time limit per test 4 seconds memory limit per test 256 megabytes input standar ...

  6. Codeforces 55D. Beautiful numbers(数位DP,离散化)

    Codeforces 55D. Beautiful numbers 题意 求[L,R]区间内有多少个数满足:该数能被其每一位数字都整除(如12,24,15等). 思路 一开始以为是数位DP的水题,觉得 ...

  7. poj3252 Round Numbers(数位dp)

    题目传送门 Round Numbers Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 16439   Accepted: 6 ...

  8. CodeForces 55D Beautiful numbers(数位dp)

    数位dp,三个状态,dp[i][j][k],i状态表示位数,j状态表示各个位上数的最小公倍数,k状态表示余数 其中j共有48种状态,最大的是2520,所以状态k最多有2520个状态. #include ...

  9. 2018 ACM 国际大学生程序设计竞赛上海大都会赛重现赛 J Beautiful Numbers (数位dp)

    题目链接:https://ac.nowcoder.com/acm/contest/163/J 题目大意:给定一个数N,求区间[1,N]中满足可以整除它各个数位之和的数的个数.(1 ≤ N ≤ 1012 ...

  10. Codeforces Beta Round #51 D. Beautiful numbers(数位dp)

    题目链接:https://codeforces.com/contest/55/problem/D 题目大意:给你一段区间[l,r],要求这段区间中可以整除自己每一位(除0意外)上的数字的整数个数,例如 ...

随机推荐

  1. mongodb 初学 目录

    mongodb 初学 索引 啦啦啦 MongoDB 教程 NoSQL 简介 MongoDB 简介 Windows 平台安装 MongoDB Linux平台安装MongoDB mongodb 在 Ubu ...

  2. javascript 作用域、作用域链理解

    JavaScript作用域就是变量和函数的可访问范围. 1.变量作用域 在JavaScript中,变量作用域分为全局作用域和局部作用域. 全局作用域 任何地方都可以定义拥有全局作用域的变量 1.没有用 ...

  3. 标签a点击以后,5秒内禁止点击,5秒后激活

    方法1:利用bootstrap里面的类disabled,禁止链接 <a href='javascript:onHref()' id="test">点击</a> ...

  4. .Net使用DES加密,.Net和java分别解密,并正则匹配替换加密密码为明文

    在VS中用WindowsApplication做一个exe程序,用来给数据库密码加密,加密代码如下 private void generateBtn_Click(object sender, Even ...

  5. 【译】调优Apache Kafka集群

    今天带来一篇译文“调优Apache Kafka集群”,里面有一些观点并无太多新颖之处,但总结得还算详细.该文从四个不同的目标出发给出了各自不同的参数配置,值得大家一读~ 原文地址请参考:https:/ ...

  6. 手机CPU天梯图2018年5月最新版

    话不多说,以下是2018年5月最新的手机CPU天梯图精简版,由于最近一两个月,芯片厂商发布的新Soc并不不多,因此这次天梯图更新,主要是来看看今年主流手机厂商都流行使用哪些处理器. 手机CPU天梯图2 ...

  7. mysql分组查询获取组内某字段最大的记录

    id sid cid 1 1 12 1 23 2 1 以sid分组,最后取cid最大的那一条,以上要取第2.3条 1 方法一: select * from (select * from table o ...

  8. 关于VC中的附加进程调试

    今天领导要求在服务端添加一个获取会议参数的功能接口,接口写好后要自己测试,但是没有客户端的源码,只有客户端安装程序和客户端与服务端发送信令的底层库KSYSClient.dll,而我修改了客户端需要底层 ...

  9. Swift - 可选类型详解

    可选类型详解 直接上代码解释 // 类中所有的属性在对象初始化时,必须有初始化值 class Person : NSObject { var name : String? var view : UIV ...

  10. PHP多种序列化/反序列化的方法

    序列化是将变量转换为可保存或传输的字符串的过程:反序列化就是在适当的时候把这个字符串再转化成原来的变量使用.这两个过程结合起来,可以轻松地存储和传输数据,使程序更具维护性. 1. serialize和 ...