题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1069

Problem Description
A group of researchers are designing an experiment to test the IQ of a monkey. They will hang a banana at the roof of a building, and at the mean time, provide the monkey with some blocks. If the monkey is clever enough, it shall be able to reach the banana
by placing one block on the top another to build a tower and climb up to get its favorite food.



The researchers have n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi, yi, zi). A block could be reoriented so that any two of its three dimensions determined the dimensions
of the base and the other dimension was the height. 



They want to make sure that the tallest tower possible by stacking blocks can reach the roof. The problem is that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly
smaller than the corresponding base dimensions of the lower block because there has to be some space for the monkey to step on. This meant, for example, that blocks oriented to have equal-sized bases couldn't be stacked. 



Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks.
 
Input
The input file will contain one or more test cases. The first line of each test case contains an integer n,

representing the number of different blocks in the following data set. The maximum value for n is 30.

Each of the next n lines contains three integers representing the values xi, yi and zi.

Input is terminated by a value of zero (0) for n.
 
Output
For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format "Case case: maximum height = height".
 
Sample Input
1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0
 
Sample Output
Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342
 
Source

题意:

把给定的长方体(不限)叠加在一起,叠加的条件是。上面一个长方体的长和宽都比以下长方体的长

和宽短;求这些长方体能叠加的最高的高度.(当中(3,2。1)能够摆放成(3,1,2)、(2,1,3)等).

PS:
每块积木最多有
3 个不同的底面和高度。我们能够把每块积木看成三个不同的积木,
那么n种类型的积木就转化为3
*
n个不同的积木,对这3
* n个积木的长依照从大到小排序;
然后找到一个递减的子序列,使得子序列的高度和最大。

代码例如以下:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
struct node
{
int l, w, h;
} a[1047];
bool cmp(node a, node b)
{
if(a.l == b.l)
{
return a.w > b.w;
}
return a.l > b.l;
}
int MAX(int a, int b)
{
if(a > b)
return a;
return b;
}
int dp[1047];//dp[i]:以第i块积木为顶的最大高度
int main()
{
int n;
int cas = 0;
while(scanf("%d",&n) && n)
{
//int L, W, H;
int tt[3];
int k = 0;
for(int i = 0; i < n; i++)
{
scanf("%d%d%d",&tt[0],&tt[1],&tt[2]);
sort(tt,tt+3);
a[k].l = tt[0];
a[k].w = tt[1];
a[k].h = tt[2];
k++;
a[k].l = tt[1];
a[k].w = tt[2];
a[k].h = tt[0];
k++;
a[k].l = tt[0];
a[k].w = tt[2];
a[k].h = tt[1];
k++;
}
sort(a,a+k,cmp);
int maxx = 0;
for(int i = 0; i < k; i++)
{
dp[i] = a[i].h;
for(int j = i-1; j >= 0; j--)
{
if(a[j].l>a[i].l && a[j].w>a[i].w)
{
dp[i] = MAX(dp[i], dp[j]+a[i].h);
}
}
if(dp[i] > maxx)
{
maxx = dp[i];
}
}
printf("Case %d: maximum height = %d\n",++cas,maxx);
}
return 0;
}

HDU 1069 Monkey and Banana(最大的单调递减序列啊 dp)的更多相关文章

  1. HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径)

    HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径) Description A group of researchers ar ...

  2. HDU 1069 Monkey and Banana dp 题解

    HDU 1069 Monkey and Banana 纵有疾风起 题目大意 一堆科学家研究猩猩的智商,给他M种长方体,每种N个.然后,将一个香蕉挂在屋顶,让猩猩通过 叠长方体来够到香蕉. 现在给你M种 ...

  3. HDU 1069 Monkey and Banana(转换成LIS,做法很值得学习)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1069 Monkey and Banana Time Limit: 2000/1000 MS (Java ...

  4. HDU 1069 Monkey and Banana(二维偏序LIS的应用)

    ---恢复内容开始--- Monkey and Banana Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  5. HDU 1069 Monkey and Banana (DP)

    Monkey and Banana Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  6. HDU 1069—— Monkey and Banana——————【dp】

    Monkey and Banana Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  7. hdu 1069 Monkey and Banana

    Monkey and Banana Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  8. HDU 1069 Monkey and Banana(动态规划)

    Monkey and Banana Problem Description A group of researchers are designing an experiment to test the ...

  9. HDU 1069 Monkey and Banana(DP 长方体堆放问题)

    Monkey and Banana Problem Description A group of researchers are designing an experiment to test the ...

  10. HDU 1069 Monkey and Banana 基础DP

    题目链接:Monkey and Banana 大意:给出n种箱子的长宽高.每种不限个数.可以堆叠.询问可以达到的最高高度是多少. 要求两个箱子堆叠的时候叠加的面.上面的面的两维长度都严格小于下面的. ...

随机推荐

  1. Sutherland-Hodgeman多边形裁剪

    原文地址:http://course.cug.edu.cn/cugFirst/computer_graphics/class/course/3-3-1-a.htm

  2. DLL文件实现窗体的模板模式

    机房合作版中第一次使用了模板方法,实现了类似窗体的界面和代码的复用..窗体继承有两种方法,一种是通过继承选择器从已编译的程序集合里选择,另一种则是通过DLL文件的方式继承.个人觉得DLL还是比较方便的 ...

  3. Valid Number leetcode java

    题目: Validate if a given string is numeric. Some examples: "0" => true " 0.1 " ...

  4. mysql启动报错cannot allocate memory for the buffer pool处理

    今天启动mysql服务器时失败了.去/var/log/mysql/查看error.log,报错信息如下: 160123 22:29:26 InnoDB: Initializing buffer poo ...

  5. Android -- com.android.providers.media,external.db

    external.db android是管理多媒体文件(音频.视频.图片)的信息是在/data/data/com.android.providers.media下的数据库文件external.db. ...

  6. SearchBySql

    Java: public List<Accountingdisclosure> searchAccountingdisclosuresBySql(String sqlStr)throws ...

  7. [Functional Programming] Create Reusable Functions with Partial Application in JavaScript

    This lesson teaches you how arguments passed to a curried function allow us to store data in closure ...

  8. 浅谈压缩感知(十四):傅里叶矩阵与小波变换矩阵的MATLAB实现

    主要内容: 傅里叶矩阵及其MATLAB实现 小波变换矩阵及其MATLAB实现  傅里叶矩阵及其MATLAB实现 傅里叶矩阵的定义:(来源: http://mathworld.wolfram.com/F ...

  9. WDCP安装可选组件的快捷命令

    memcache的安装 wget -c http://down.wdlinux.cn/in/memcached_ins.sh chmod 755 memcached_ins.sh ./memcache ...

  10. 25个Web前端开发工程师必看的国外大牛和酷站

    逛了一周国外大牛们的博客与酷站,真是满满的钦佩.震撼.羡慕.惊喜………… Web设计是一个不断变化的领域,因此掌握最新的发展趋势及技术动向对设计师来说非常重要.无论是学习新技术,还是寻找免费资源与工具 ...