题目链接:

http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1010&cid=459

找出公式,公式有实际意义,某种情形当重复做n次实验时会出现一次,即出现的概率为1/n,现在要想出现这种情形,平均要做多少次实验,显然平均要做n次。

说一个具体的,比如掷色子,有6个点,6个点随机等概率出现。掷一次色子出现1的概率为1/6,现在想掷出1来,平均要掷色子多少次,即次数的数学期望是多少。

可以证明:

设掷i次色子才出现1的概率为p[i],则有

p[1] = 1/6;

p[2] = (5/6) *(1/6);第一次没有出现

p[3] = (5/6)^2*(1/6)

`````

p[n] = (5/6)^n-1*(1/6);前n-1次没有出现

``````

所以次数的数学期望为sum(k*p[k]),(k>=1,k为自然数,可以取到无穷)  ,据观察,有p[i] = p[i-1]*(5/6);

式子1:s = 1*p[1] + 2*p[2] + ``` +n*p[n] +````

式子2:(5/6)*s =     1*p[1] + ````(n-1)*p[n]+````(式子2为式子1的左右两边同时乘以5/6得到)

用式子1-式子2得

(1/6)*s = 1/6 + (1/6)*(5/6) + (1/6)*(5/6)^2````+(1/6)*(5/6)^n+```

又等比数列的公式得(1/6)*s =( 1/6(1 -(5/6)^n)/(1-5/6).由于n为正无穷,所有(5/6)^n =0;所以s = 6.

这个题的公式为:

情形1,出现连续n个相同后停止掷色子的次数的期望 = 1+m+m^2 + ``` + m^(n-1);

情形2,出现连续n个不同后停止掷色子的次数的期望 = 1+m/(m-1) + m^2/((m-1)*(m-2))+```+m^(n-1)/((m-1)*(m-2)*```*(m-n+1));

可以这样解释,情形1,先随便掷色子一次,后面要掷出和这个相同的期望数为m,然后仍要掷出相同的期望为m^2```

类推,后面要掷出和这个色子同色的概率为1/m,所以次数的期望为m。第三次掷色子要和前两次相同的概率为1/(m*m),所以期望为m*m```

其余就自己推吧···(未必对···)

另外一种方法:概率dp,摘自杭电解题报告

设dp[i]表示当前在 已经投掷出 i个 不相同/相同 这个状态时期望还需要投掷多少次,然后dp[i] 有如下等式:

相同:

//dp[0] = 1 + dp[1]

//dp[1] = 1 + ((m-1)dp[1] + dp[2]) / m

//dp[i] = 1 + ((m-1)dp[1] + dp[i+1]) / m

//...

//dp[n] = 0;

不相同:

//dp[0] = 1 + dp[1]

//dp[1] = 1 + (dp[1] + (m-1) dp[2]) / m

//dp[2] = 1 + (dp[1] + dp[2] + (m-2) dp[3]) / m

//dp[i] = 1 + (dp[1] + dp[2] + ... dp[i] + (m-i)dp[i+1]) / m

//...

//dp[n] = 0;

。。于是可以高斯消元。。对于第一问。。我们发现就是相当于 Typing Monkey 问题中字符串是 AAAA..AA 这一特殊情况。。解得递推式:

dp[n] = 0

dp[n-1] = dp[n] * m + 1

。。。

解开后等于等比数列求和。

(也可以直接得到这个公式。。。因为在当前状态只有 m/1 的概率可以进入下一状态,否则要重新来过。。而这一步会另总的步数 + 1。)

对于第二问。。

现在设s[i]=sigma{dp[i], 1..i},对s[i] 列方程
每个方程是关于三个相邻的s[i] 的,然后就可以线性时间解出来了。

也可以设 d[i] = dp[i] - dp[i+1].

可以得到 d[i] =  m * d[i-1]  / (m-i)

然后就是解一元一次方程...

参见:

http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=13614

http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=21631

http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=24402

http://www.cnblogs.com/ch3656468/archive/2011/05/04/2036332.html

上面的两种递推式肯定能推出上面的公式来,所以我直接用公式写的

贴代码:

 #include <cstdio>
int main()
{
// freopen("in.c","r",stdin);
int t;
while(scanf("%d",&t) != EOF)
{
while(t--)
{
double flag,m,n;
scanf("%lf%lf%lf",&flag,&m,&n);
double ans=,tmp =;
if(flag == )
{
for(int i=; i<n; ++i)
{
tmp *= m;
ans += tmp; }
}
else
{
for(int i=; i<n; ++i)
{
tmp *= (m/(m-i));
ans += tmp;
}
}
printf("%lf\n",ans);
}
}
return ;
}

dice 概率论 概率DP的更多相关文章

  1. hdu 4625 Dice(概率DP)

    Dice Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submi ...

  2. hdu 4586 Play the Dice(概率dp)

    Problem Description There is a dice with n sides, which are numbered from 1,2,...,n and have the equ ...

  3. HihoCoder - 1339 Dice Possibility(概率dp)

    题意:求用N(1<=N<=100)个骰子掷出M(1<=M<=600)的概率 分析:直接求概率可能出现6^100次方,会爆精度.可以用一个数组dp[i][j]记录用i个骰子掷出j ...

  4. HihoCoder1339 Dice Possibility(概率DP+母函数)

    时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 What is possibility of rolling N dice and the sum of the numb ...

  5. HDU 4652 Dice (概率DP)

    版权声明:欢迎关注我的博客,本文为博主[炒饭君]原创文章,未经博主同意不得转载 https://blog.csdn.net/a1061747415/article/details/36685493 D ...

  6. Dice (III) 概率dp

    #include <cstdio> #include <iostream> #include <cstring> #include <algorithm> ...

  7. Throwing Dice(概率dp)

    C - Throwing Dice Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu Lig ...

  8. HDU 4599 Dice (概率DP+数学+快速幂)

    题意:给定三个表达式,问你求出最小的m1,m2,满足G(m1) >= F(n), G(m2) >= G(n). 析:这个题是一个概率DP,但是并没有那么简单,运算过程很麻烦. 先分析F(n ...

  9. SPOJ Favorite Dice(概率dp)

    题意: 一个骰子,n个面,摇到每一个面的概率都一样.问你把每一个面都摇到至少一次需要摇多少次,求摇的期望次数 题解: dp[i]:已经摇到i个面,还需要摇多少次才能摇到n个面的摇骰子的期望次数 因为我 ...

随机推荐

  1. ZendFramework中实现自动加载models

    最近自学Zendframework中,写Controller的时候总要require model下的类文件,然后才能实例化,感觉非常不爽 Google了许久,找到个明白人写的方法不错,主要就是修改ap ...

  2. [转]TOMCAT启动提示NB: JAVA_HOME should point to a JDK not a JRE解决

    来源:http://blog.csdn.net/caozhongyan/article/details/6602759 本人使用的Tomcat版本为apache-tomcat-6.0.18(用的是解压 ...

  3. 3.2 x86体系结构

    计算机组成 3 指令系统体系结构 3.2 x86体系结构 X86是商业上最为成功,影响力最大的一种体系结构.但从技术的角度看,它又存在着很多的问题,那我们就来一起分析X86这种体系结构的特点. 要探讨 ...

  4. LeetCode--175--组合两个表

    问题描述: 表1: Person +-------------+---------+ | 列名 | 类型 | +-------------+---------+ | PersonId | int | ...

  5. vue.js 过渡&动画

    9-17 在add ,update, remove DOM时 提供多种方式的应用过度效果. 包括以下可选工具:(2大类,css和js) 在css过度和动画中自动应用class 配合使用第三方css动画 ...

  6. PHP函数笔记

    一.函数(Function) 1.什么是函数:封装的,可以重复使用的                       完成特定功能的代码段. 2.分类  (1)系统函数  (2)自定义函数 3.自定义函数 ...

  7. 微信公众号开发之如何一键导出微信所有用户信息到Excel

    微信开发交流群:148540125 系列文章参考地址 极速开发微信公众号欢迎留言.转发.打赏 项目源码参考地址 点我点我--欢迎Start 极速开发微信公众号系列文章之如何一键导出微信所有用户信息到E ...

  8. gleez安装报错

    1gleez安装时候常见的问题就是别人在代码版本服务器上安装好了,一般开发者都会去对文件做一些忽略,所以导致有几个文件是没有的.比如: bootstrap.php      .htaccess 2.如 ...

  9. Markdown语法笔记

    1.文字和图片中怎么让图片换行? 答:在文字和图片之间加入多个空格或者直接按Tab健即可

  10. DIV字体

    1.如何设定文字字体.颜色.大小 —— 使用font font-style设定斜体,比如font-style: italicfont-weight设定文字粗细,比如font-weight: bold; ...