26最短路径之Floyd算法
Floyd算法
思想:将n个顶点的图G“分成”很多子图
每对顶点vi和vj对应子图Gij(i=0,1,…,n-1和j=0,1,…,n-1)
每对顶点vi和vj都保留一条顶点限于子图Gij中的最短路径Pij(称为待定路径),其长度为Dij,不断地往子图Gij中增加“中间过渡点”(子图不断扩大),不断地将Pij优化(始终保持在Gij中是最短的),当图中所有n个顶点都作为中间过渡点加到子图Gij中时,子图Gij就变成了原图G,待定路径Pij也就变成最终所求的(在原图中的)vi到vj的最短路径。(注:i、j全部为字母下标)
步骤:
步骤1)开始时,每个子图Gij只含顶点vi和vj,vi到vj的当前最短路径就是边<vi,vj>本身
,若此边不存在,则认为其长度为无穷大。
步骤2)k从0到n-1,执行循环体:
①向子图Gij中加一个“中间点”vk
②如果Dik+Dkj<Dij
说明从vi到中间点vk,再由中间点vk到vj的路径
比vi到vj不经过中间点vk的路径短
则修改待定路径Pij和其长度Dij,使
Pij=Pik接Pkj
Dij=Dik+Dkj
示例
以上为官方示例。世俗观点还没出来。(本人还没完全弄懂,后续)。
Floyd算法(伪程序)
void Floyd(***) //“***”表示必要的参数
{ int i,j,k;
//初始化阶段
for(i=0;i<n;i++)
for(j=0; j<n;j++)
{ Dij=边<vi,vj>的长度;
if(Dij不是无穷大) Pij=vi接vj; else Pij=空;
}
//待定路径逐步优化阶段
for(k=0; k<n;k++) //加中间点vk
for(i=0;i<n;i++)
for(j=0;j<n;j++)
if(Dij>Dik+Dkj)
{ Dij=Dik+Dkj;
Pij=Pik接Pkj;
}
}
26最短路径之Floyd算法的更多相关文章
- 数据结构与算法--最短路径之Floyd算法
数据结构与算法--最短路径之Floyd算法 我们知道Dijkstra算法只能解决单源最短路径问题,且要求边上的权重都是非负的.有没有办法解决任意起点到任意顶点的最短路径问题呢?如果用Dijkstra算 ...
- 最短路径 - 弗洛伊德(Floyd)算法
为了能讲明白弗洛伊德(Floyd)算法的主要思想,我们先来看最简单的案例.图7-7-12的左图是一个简单的3个顶点的连通网图. 我们先定义两个二维数组D[3][3]和P[3][3], D代表顶点与顶点 ...
- 最短路径之Floyd算法
Floyd算法又称弗洛伊德算法,也叫做Floyd's algorithm,Roy–Warshall algorithm,Roy–Floyd algorithm, WFI algorithm. Floy ...
- 最短路径问题——floyd算法
floyd算法和之前讲的bellman算法.dijkstra算法最大的不同在于它所处理的终于不再是单源问题了,floyd可以解决任何点到点之间的最短路径问题,个人觉得floyd是最简单最好用的一种算法 ...
- 最短路径---Dijkstra/Floyd算法
1.Dijkstra算法基础: 算法过程比prim算法稍微多一点步骤,但思想确实巧妙也是贪心,目的是求某个源点到目的点的最短距离,总的来说dijkstra也就是求某个源点到目的点的最短路,求解的过程也 ...
- 最短路径问题-Floyd算法
概念 最短路径也是图的一个应用,即寻找图中某两个顶点的最短路径长度. 实际应用:例如确定某两个城市间的坐火车最短行车路线长度等. Floyd algorithm 中文名就是弗洛伊德算法. 算法思路:用 ...
- 图的最短路径---弗洛伊德(Floyd)算法浅析
算法介绍 和Dijkstra算法一样,Floyd算法也是为了解决寻找给定的加权图中顶点间最短路径的算法.不同的是,Floyd可以用来解决"多源最短路径"的问题. 算法思路 算法需要 ...
- 每一对顶点间最短路径的Floyd算法
Floyd思想可用下式描述: A-1[i][j]=gm[i][j] A(k+1)[i][j]=min{Ak[i][j],Ak[i][k+1]+Ak[K+1][j]} -1<=k<=n ...
- 图结构练习——最短路径(floyd算法(弗洛伊德))
图结构练习——最短路径 Time Limit: 1000ms Memory limit: 65536K 有疑问?点这里^_^ 题目描述 给定一个带权无向图,求节点1到节点n的最短路径. 输 ...
随机推荐
- 被C语言操作符优先级坑了
今天有一个枚举的题目的代码是这样的: 重点在于maxXor这个函数的实现,枚举两个数字,其中maxr保存了最大值的 i 异或 j , 可是这个程序执行结果大大出乎意外-_-. 然后就把 i 异或 j ...
- MacOS 安装 nginx
brew install nginx 开机启动 $ sudo cp `brew --prefix nginx`/homebrew.mxcl.nginx.plist /Library/LaunchDae ...
- iOS计算两个时间的时间差
+ (long)calculteHourL:(NSDate *)endDate startDate:(NSDate *)startDate { NSCalendar *cal = [NSCalenda ...
- C++ Error: error LNK2019: unresolved external symbol
在某工程中新添加了文件x.cu与x.hpp,实现了一些功能,最后编译整个工程的时候就出现了这个问题: error LNK2019: unresolved external symbol 这是链接错误, ...
- Navicat 同步数据库中数据
Navicat工具同步两个数据库中的数据 第一步在我们的电脑里面打开navicat软件,打开要复制表的数据库,如下图所示: 第二步点击上方的“工具->数据传输”,如下图所示: 第三步进 ...
- ArcEngine TextElement 定位点的问题
做ArcGIS Add-In开发,需要在ArcMap中数据视图的左上角加一个上标,如果上标与数据中的地名图层重合,则放在右上角. 上标通过ITextElement,IElement,ITextSymb ...
- HTTP与HTTPS对访问速度(性能)的影响【转】
1 前言 HTTPS 在保护用户隐私,防止流量劫持方面发挥着非常关键的作用,但与此同时,HTTPS 也会降低用户访问速度,增加网站服务器的计算资源消耗. 本文主要介绍 https 对用户体验的影响. ...
- Timer应用之Interval优化
开发中, 有时有这种场景,使用 Timer 的 Timer_Elapsed 间隔 执行(如:从数据库)获取数据 与 现有 应用服务器中的 静态变量数据(起到缓存的目的)做 对比 ,若有改变,则 更新 ...
- 51nod 1009 - 数字1的数量 - [数位DP][模板的应用以及解释]
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1009 基准时间限制:1 秒 空间限制:131072 KB 给 ...
- 停机问题(英语:halting problem)是逻辑数学中可计算性理论的一个问题。通俗地说,停机问题就是判断任意一个程序是否能在有限的时间之内结束运行的问题。该问题等价于如下的判定问题:是否存在一个程序P,对于任意输入的程序w,能够判断w会在有限时间内结束或者死循环。
htps://baike.baidu.com/item/停机问题/4131067?fr=aladdin 理发师悖论:村子里有个理发师,这个理发师有条原则是,对于村里所有人,当且仅当这个人不自己理发,理 ...