sklearn数据集与机器学习组成

机器学习组成:模型、策略、优化

《统计机器学习》中指出:机器学习=模型+策略+算法。其实机器学习可以表示为:Learning= Representation+Evalution+Optimization。我们就可以将这样的表示和李航老师的说法对应起来。机器学习主要是由三部分组成,即:表示(模型)、评价(策略)和优化(算法)。

表示(或者称为:模型):Representation

表示主要做的就是建模,故可以称为模型。模型要完成的主要工作是转换:将实际问题转化成为计算机可以理解的问题,就是我们平时说的建模。类似于传统的计算机学科中的算法,数据结构,如何将实际的问题转换成计算机可以表示的方式。这部分可以见“简单易学的机器学习算法”。给定数据,我们怎么去选择对应的问题去解决,选择正确的已有的模型是重要的一步。

评价(或者称为:策略):Evalution

评价的目标是判断已建好的模型的优劣。对于第一步中建好的模型,评价是一个指标,用于表示模型的优劣。这里就会是一些评价的指标以及一些评价函数的设计。在机器学习中会有针对性的评价指标。

  • 分类问题

优化:Optimization

优化的目标是评价的函数,我们是希望能够找到最好的模型,也就是说评价最高的模型。

开发机器学习应用程序的步骤

(1)收集数据

我们可以使用很多方法收集样本护具,如:制作网络爬虫从网站上抽取数据、从RSS反馈或者API中得到信息、设备发送过来的实测数据。

(2)准备输入数据

得到数据之后,还必须确保数据格式符合要求。

(3)分析输入数据

这一步的主要作用是确保数据集中没有垃圾数据。如果是使用信任的数据来源,那么可以直接跳过这个步骤

(4)训练算法

机器学习算法从这一步才真正开始学习。如果使用无监督学习算法,由于不存在目标变量值,故而也不需要训练算法,所有与算法相关的内容在第(5)步

(5)测试算法

这一步将实际使用第(4)步机器学习得到的知识信息。当然在这也需要评估结果的准确率,然后根据需要重新训练你的算法

(6)使用算法

转化为应用程序,执行实际任务。以检验上述步骤是否可以在实际环境中正常工作。如果碰到新的数据问题,同样需要重复执行上述的步骤

Sklearn数据集与机器学习的更多相关文章

  1. 机器学习笔记(四)--sklearn数据集

    sklearn数据集 (一)机器学习的一般数据集会划分为两个部分 训练数据:用于训练,构建模型. 测试数据:在模型检验时使用,用于评估模型是否有效. 划分数据的API:sklearn.model_se ...

  2. 【学习笔记】sklearn数据集与估计器

    数据集划分 机器学习一般的数据集会划分为两个部分: 训练数据:用于训练,构建模型 测试数据:在模型检验时使用,用于评估模型是否有效 训练数据和测试数据常用的比例一般为:70%: 30%, 80%: 2 ...

  3. sklearn数据集

    数据集划分: 机器学习一般的数据集会划分为两个部分 训练数据: 用于训练,构建模型 测试数据: 在模型检验时使用,用于评估模型是否有效 sklearn数据集划分API: 代码示例文末! scikit- ...

  4. sklearn简单实现机器学习算法记录

    sklearn简单实现机器学习算法记录 需要引入最重要的库:Scikit-learn 一.KNN算法 from sklearn import datasets from sklearn.model_s ...

  5. 【R】如何确定最适合数据集的机器学习算法 - 雪晴数据网

          [R]如何确定最适合数据集的机器学习算法 [R]如何确定最适合数据集的机器学习算法 抽查(Spot checking)机器学习算法是指如何找出最适合于给定数据集的算法模型.本文中我将介绍八 ...

  6. sklearn数据集划分

    sklearn数据集划分方法有如下方法: KFold,GroupKFold,StratifiedKFold,LeaveOneGroupOut,LeavePGroupsOut,LeaveOneOut,L ...

  7. 从Iris数据集开始---机器学习入门

    代码多来自<Introduction to Machine Learning with Python>. 该文集主要是自己的一个阅读笔记以及一些小思考,小总结. 前言 在开始进行模型训练之 ...

  8. (数据科学学习手札27)sklearn数据集分割方法汇总

    一.简介 在现实的机器学习任务中,我们往往是利用搜集到的尽可能多的样本集来输入算法进行训练,以尽可能高的精度为目标,但这里便出现一个问题,一是很多情况下我们不能说搜集到的样本集就能代表真实的全体,其分 ...

  9. Sklearn 与 TensorFlow 机器学习实战—一个完整的机器学习项目

    本章中,你会假装作为被一家地产公司刚刚雇佣的数据科学家,完整地学习一个案例项目.下面是主要步骤: 项目概述. 获取数据. 发现并可视化数据,发现规律. 为机器学习算法准备数据. 选择模型,进行训练. ...

随机推荐

  1. RequireJs 与 SeaJs的相同之处与区别

    相同之处: RequireJS 和 Sea.js 都是模块加载器,倡导模块化开发理念,核心价值是让 JavaScript 的模块化开发变得简单自然. 不同之处: 定位有差异.RequireJS 想成为 ...

  2. ASP.NET MVC开发基础

    一.ASP.Net MVC的开发模式 (1)处理流程 在ASP.Net MVC中,客户端所请求的URL是被映射到相应的Controller去,然后由Controller来处理业务逻辑,或许要从Mode ...

  3. Java中的内存泄露

  4. 六、物理数据模型(PDM逆向工程)

      物理数据模型PDM 物理数据模型(Physical Data Model,PDM):在数据库的逻辑结构设计好之后,就需要完成其物理设计,PDM就是为实现这一目的而设计的. 物理数据模型是以常用的D ...

  5. Java性能分析之线程栈详解与性能分析

    Java性能分析之线程栈详解 Java性能分析迈不过去的一个关键点是线程栈,新的性能班级也讲到了JVM这一块,所以本篇文章对线程栈进行基础知识普及以及如何对线程栈进行性能分析. 基本概念 线程堆栈也称 ...

  6. 【转】每天一个linux命令(32):gzip命令

    原文网址:http://www.cnblogs.com/peida/archive/2012/12/06/2804323.html 减少文件大小有两个明显的好处,一是可以减少存储空间,二是通过网络传输 ...

  7. ORACLE数据导入导出后新数据库中某些表添加操作报错[ORA-12899]

    由于项目需要,我在搭建了新的开发环境后,需要将之前环境中的ORACLE数据库导出,再导入到新的开发环境下.当导出导入完成后,使用数据库进行添加操作时 发现针对很多表的添加操作报错,具体报错原因描述为: ...

  8. selenium常用获取元素点

    //通过id WebElement element = driver.findElement(By.id("coolestWidgetEvah")); //通过className ...

  9. FineUI导出Excel

    1.[经验分享]导出Excel的乱码问题http://www.fineui.com/bbs/forum.php?mod=viewthread&tid=6326&highlight=Ex ...

  10. ML(5):KNN算法

    K近邻算法,即K-Nearest Neighbor algorithm,简称KNN算法,可以简单的理解为由那离自己最近的K个点来投票决定待分类数据归为哪一类.这个算法是机器学习里面一个比较经典的算法, ...