tensorflow语义分割api使用(deeplab训练cityscapes)
- 安装教程:https://github.com/tensorflow/models/blob/master/research/deeplab/g3doc/installation.md
- cityscapes训练:https://github.com/tensorflow/models/blob/master/research/deeplab/g3doc/cityscapes.md
遇到的坑:
1. 环境:
- tensorflow1.8+CUDA9.0+cudnn7.0+annaconda3+py3.5
- 使用最新的tensorflow1.12或者1.10都不行,报错:报错不造卷积算法(convolution algorithm...)
2. 数据集转换
# Exit immediately if a command exits with a non-zero status.
set -e CURRENT_DIR=$(pwd)
WORK_DIR="." # Root path for Cityscapes dataset.
CITYSCAPES_ROOT="${WORK_DIR}/cityscapes" # Create training labels.
python "${CITYSCAPES_ROOT}/cityscapesscripts/preparation/createTrainIdLabelImgs.py" # Build TFRecords of the dataset.
# First, create output directory for storing TFRecords.
OUTPUT_DIR="${CITYSCAPES_ROOT}/tfrecord"
mkdir -p "${OUTPUT_DIR}" BUILD_SCRIPT="${CURRENT_DIR}/build_cityscapes_data.py" echo "Converting Cityscapes dataset..."
python "${BUILD_SCRIPT}" \
--cityscapes_root="${CITYSCAPES_ROOT}" \
--output_dir="${OUTPUT_DIR}" \
- 首先当前conda环境下安装cityscapesScripts模块,要支持py3.5才行;
- 由于cityscapesscripts/preparation/createTrainIdLabelImgs.py里面默认会把数据集gtFine下面的test,train,val文件夹json文件都转为TrainIdlandelImgs.png;然而在test文件下有很多json文件编码格式是错误的,大约十几张,每次报错,然后将其剔除!!!
- 然后执行build_cityscapes_data.py将img,lable转换为tfrecord格式。
3. 训练cityscapes代码
- 将训练代码写成脚本文件:train_deeplab_cityscapes.sh
#!/bin/bash # CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --backbone resnet --lr 0.01 --workers 4 --epochs 40 --batch-size 16 --gpu-ids 0,1,2,3 --checkname deeplab-resnet --eval-interval 1 --dataset coco PATH_TO_INITIAL_CHECKPOINT='/home/rjw/tf-models/research/deeplab/pretrain_models/deeplabv3_cityscapes_train/model.ckpt'
PATH_TO_TRAIN_DIR='/home/rjw/tf-models/research/deeplab/datasets/cityscapes/exp/train_on_train_set/train/'
PATH_TO_DATASET='/home/rjw/tf-models/research/deeplab/datasets/cityscapes/tfrecord'
WORK_DIR='/home/rjw/tf-models/research/deeplab' # From tensorflow/models/research/
python "${WORK_DIR}"/train.py \
--logtostderr \
--training_number_of_steps=40000 \
--train_split="train" \
--model_variant="xception_65" \
--atrous_rates=6 \
--atrous_rates=12 \
--atrous_rates=18 \
--output_stride=16 \
--decoder_output_stride=4 \
--train_crop_size=513 \
--train_crop_size=513 \
--train_batch_size=1 \
--fine_tune_batch_norm=False \
--dataset="cityscapes" \
--tf_initial_checkpoint=${PATH_TO_INITIAL_CHECKPOINT} \
--train_logdir=${PATH_TO_TRAIN_DIR} \
--dataset_dir=${PATH_TO_DATASET}
参数分析:
training_number_of_steps: 训练迭代次数;
train_crop_size:训练图片的裁剪大小,因为我的GPU只有8G,故我将这个设置为513了;
train_batch_size: 训练的batchsize,也是因为硬件条件,故保持1;
fine_tune_batch_norm=False :是否使用batch_norm,官方建议,如果训练的batch_size小于12的话,须将该参数设置为False,这个设置很重要,否则的话训练时会在2000步左右报错
tf_initial_checkpoint:预训练的初始checkpoint,这里设置的即是前面下载的../research/deeplab/backbone/deeplabv3_cityscapes_train/model.ckpt.index
train_logdir: 保存训练权重的目录,注意在开始的创建工程目录的时候就创建了,这里设置为"../research/deeplab/exp/train_on_train_set/train/"
dataset_dir:数据集的地址,前面创建的TFRecords目录。这里设置为"../dataset/cityscapes/tfrecord"
4.验证测试
- 验证脚本:
#!/bin/bash # CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --backbone resnet --lr 0.01 --workers 4 --epochs 40 --batch-size 16 --gpu-ids 0,1,2,3 --checkname deeplab-resnet --eval-interval 1 --dataset coco PATH_TO_INITIAL_CHECKPOINT='/home/rjw/tf-models/research/deeplab/pretrain_models/deeplabv3_cityscapes_train/'
PATH_TO_CHECKPOINT='/home/rjw/tf-models/research/deeplab/datasets/cityscapes/exp/train_on_train_set/train/'
PATH_TO_EVAL_DIR='/home/rjw/tf-models/research/deeplab/datasets/cityscapes/exp/train_on_train_set/eval/'
PATH_TO_DATASET='/home/rjw/tf-models/research/deeplab/datasets/cityscapes/tfrecord'
WORK_DIR='/home/rjw/tf-models/research/deeplab' # From tensorflow/models/research/
python "${WORK_DIR}"/eval.py \
--logtostderr \
--eval_split="val" \
--model_variant="xception_65" \
--atrous_rates=6 \
--atrous_rates=12 \
--atrous_rates=18 \
--output_stride=16 \
--decoder_output_stride=4 \
--eval_crop_size=1025 \
--eval_crop_size=2049 \
--dataset="cityscapes" \
--checkpoint_dir=${PATH_TO_INITIAL_CHECKPOINT} \
--eval_logdir=${PATH_TO_EVAL_DIR} \
--dataset_dir=${PATH_TO_DATASET}
- rusult:model.ckpt-40000为在初始化模型上训练40000次迭代的模型;后面用初始化模型测试miou_1.0还是很低,不知道是不是有什么参数设置的问题!!!
- 注意,如果使用官方提供的checkpoint,压缩包中是没有checkpoint文件的,需要手动添加一个checkpoint文件;初始化模型中是没有提供chekpoint文件的。
INFO:tensorflow:Restoring parameters from /home/rjw/tf-models/research/deeplab/datasets/cityscapes/exp/train_on_train_set/train/model.ckpt-40000
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Starting evaluation at 2018-12-18-07:13:08
INFO:tensorflow:Evaluation [50/500]
INFO:tensorflow:Evaluation [100/500]
INFO:tensorflow:Evaluation [150/500]
INFO:tensorflow:Evaluation [200/500]
INFO:tensorflow:Evaluation [250/500]
INFO:tensorflow:Evaluation [300/500]
INFO:tensorflow:Evaluation [350/500]
INFO:tensorflow:Evaluation [400/500]
INFO:tensorflow:Evaluation [450/500]
miou_1.0[0.478293568]
INFO:tensorflow:Waiting for new checkpoint at /home/rjw/tf-models/research/deeplab/pretrain_models/deeplabv3_cityscapes_train/
INFO:tensorflow:Found new checkpoint at /home/rjw/tf-models/research/deeplab/pretrain_models/deeplabv3_cityscapes_train/model.ckpt
INFO:tensorflow:Graph was finalized.
2018-12-18 15:18:05.210957: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1435] Adding visible gpu devices: 0
2018-12-18 15:18:05.211047: I tensorflow/core/common_runtime/gpu/gpu_device.cc:923] Device interconnect StreamExecutor with strength 1 edge matrix:
2018-12-18 15:18:05.211077: I tensorflow/core/common_runtime/gpu/gpu_device.cc:929] 0
2018-12-18 15:18:05.211100: I tensorflow/core/common_runtime/gpu/gpu_device.cc:942] 0: N
2018-12-18 15:18:05.211645: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1053] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 9404 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:01:00.0, compute capability: 6.1)
INFO:tensorflow:Restoring parameters from /home/rjw/tf-models/research/deeplab/pretrain_models/deeplabv3_cityscapes_train/model.ckpt
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Starting evaluation at 2018-12-18-07:18:06
INFO:tensorflow:Evaluation [50/500]
INFO:tensorflow:Evaluation [100/500]
INFO:tensorflow:Evaluation [150/500]
INFO:tensorflow:Evaluation [200/500]
INFO:tensorflow:Evaluation [250/500]
INFO:tensorflow:Evaluation [300/500]
INFO:tensorflow:Evaluation [350/500]
INFO:tensorflow:Evaluation [400/500]
INFO:tensorflow:Evaluation [450/500]
miou_1.0[0.496331513]
5.可视化测试
- 在vis目录下生成分割结果图
#!/bin/bash # CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --backbone resnet --lr 0.01 --workers 4 --epochs 40 --batch-size 16 --gpu-ids 0,1,2,3 --checkname deeplab-resnet --eval-interval 1 --dataset coco PATH_TO_CHECKPOINT='/home/rjw/tf-models/research/deeplab/datasets/cityscapes/exp/train_on_train_set/train/'
PATH_TO_VIS_DIR='/home/rjw/tf-models/research/deeplab/datasets/cityscapes/exp/train_on_train_set/vis/'
PATH_TO_DATASET='/home/rjw/tf-models/research/deeplab/datasets/cityscapes/tfrecord'
WORK_DIR='/home/rjw/tf-models/research/deeplab' # From tensorflow/models/research/
python "${WORK_DIR}"/vis.py \
--logtostderr \
--vis_split="val" \
--model_variant="xception_65" \
--atrous_rates=6 \
--atrous_rates=12 \
--atrous_rates=18 \
--output_stride=16 \
--decoder_output_stride=4 \
--vis_crop_size=1025 \
--vis_crop_size=2049 \
--dataset="cityscapes" \
--colormap_type="cityscapes" \
--checkpoint_dir=${PATH_TO_CHECKPOINT} \
--vis_logdir=${PATH_TO_VIS_DIR} \
--dataset_dir=${PATH_TO_DATASET}
reference:
tensorflow语义分割api使用(deeplab训练cityscapes)的更多相关文章
- 【实践】如何利用tensorflow的object_detection api开源框架训练基于自己数据集的模型(Windows10系统)
如何利用tensorflow的object_detection api开源框架训练基于自己数据集的模型(Windows10系统) 一.环境配置 1. Python3.7.x(注:我用的是3.7.3.安 ...
- CocoStuff—基于Deeplab训练数据的标定工具【二、用已提供的标注数据跑通项目】
一.说明 本文为系列博客第二篇,主要讲述笔者在使用该团队提供已经标注好的COCO数据集进行训练的过程. 由于在windows中编译Caffe和Deeplab特别的麻烦,笔者并没有去探索,后续可能会去尝 ...
- TensorFlow Object Detection API(Windows下训练)
本文为作者原创,转载请注明出处(http://www.cnblogs.com/mar-q/)by 负赑屃 最近事情比较多,前面坑挖的有点久,今天终于有时间总结一下,顺便把Windows下训练跑通.Li ...
- 语义分割丨PSPNet源码解析「训练阶段」
引言 之前一段时间在参与语义分割的项目,最近有时间了,正好把这段时间的所学总结一下. 在代码上,语义分割的框架会比目标检测简单很多,但其中也涉及了很多细节.在这篇文章中,我以PSPNet为例,解读一下 ...
- 语义分割丨DeepLab系列总结「v1、v2、v3、v3+」
花了点时间梳理了一下DeepLab系列的工作,主要关注每篇工作的背景和贡献,理清它们之间的联系,而实验和部分细节并没有过多介绍,请见谅. DeepLabv1 Semantic image segmen ...
- TensorFlow中的语义分割套件
TensorFlow中的语义分割套件 描述 该存储库用作语义细分套件.目标是轻松实现,训练和测试新的语义细分模型!完成以下内容: 训练和测试方式 资料扩充 几种最先进的模型.轻松随插即用 能够使用任何 ...
- caffe初步实践---------使用训练好的模型完成语义分割任务
caffe刚刚安装配置结束,乘热打铁! (一)环境准备 前面我有两篇文章写到caffe的搭建,第一篇cpu only ,第二篇是在服务器上搭建的,其中第二篇因为硬件环境更佳我们的步骤稍显复杂.其实,第 ...
- 使用TensorFlow Object Detection API+Google ML Engine训练自己的手掌识别器
上次使用Google ML Engine跑了一下TensorFlow Object Detection API中的Quick Start(http://www.cnblogs.com/take-fet ...
- 比较语义分割的几种结构:FCN,UNET,SegNet,PSPNet和Deeplab
简介 语义分割:给图像的每个像素点标注类别.通常认为这个类别与邻近像素类别有关,同时也和这个像素点归属的整体类别有关.利用图像分类的网络结构,可以利用不同层次的特征向量来满足判定需求.现有算法的主要区 ...
随机推荐
- BZOJ2190 [SDOI2008]仪仗队 [欧拉函数]
题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图 ...
- HDU 5832 A water problem 水题
A water problem 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5832 Description Two planets named H ...
- HDU 5745 La Vie en rose 暴力
La Vie en rose 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5745 Description Professor Zhang woul ...
- SLAM(一)----学习资料整理
转自:http://www.cnblogs.com/wenhust/ 书籍: 1.必读经典 Thrun S, Burgard W, Fox D. <Probabilistic robotics& ...
- 马士兵hadoop第二课:hdfs集群集中管理和hadoop文件操作
马士兵hadoop第一课:虚拟机搭建和安装hadoop及启动 马士兵hadoop第二课:hdfs集群集中管理和hadoop文件操作 马士兵hadoop第三课:java开发hdfs 马士兵hadoop第 ...
- 在Ubuntu的系统中怎样将应用程序加入到開始菜单中
/********************************************************************* * Author : Samson * Date ...
- 前端构建和模块化工具-coolie
[前言] 假设你之前用过前端模块化工具:seajs.requirejs. 用过前端构建工具grunt.gulp, 而且感到了一些不方便和痛苦,那么你能够试试coolie [coolie] 本文不是一篇 ...
- TCP握手与socket通信细节
http://www.jianshu.com/u/5qrPPM http://www.jianshu.com/p/f86512230707
- 用C扩展Python3
官方文档: https://docs.python.org/3/extending/index.html 交叉编译到aarch64上面 以交叉编译到aarch64上面为例,下面是Extest.c的实现 ...
- arcgis的afcore_libfnp.dll经常被360杀毒,删除,请到恢复区恢复
arcgis的afcore_libfnp.dll经常被360杀毒,删除,请到恢复区恢复