说说UART(转)
串口协议基础
1 串口概述
串口由收发器组成。发送器是通过TxD引脚发送串行数据,接收器是通过RxD引脚接收串行数据。发送器和接收器都利用了一个移位寄存器,这个移位寄存器可以将数据进行“并转串”和“串转并”。虽然一个UART接口通常都包含了发送器和接收器,而实际上一个全双工串口UART控制器需要独立的发送和接收通道。这是因为每个控制通道只控制了一个pin(一个通道要么配置成发送器,要么配置成接收器,不能同时配置成接收器和发送器)。没有严格规定哪个通道可以是发送器、哪个通道可以使接收器。
UART协议(串口协议)允许选择一个校验位来检测简单的通信错误(transmission errors)。校验位可以通过两种不同的方式进行产生和检测(generated and checked):奇校验和偶校验(odd and even parity)。UART协议功能支持所有的校验方式。
串口协议对每个字节数据的bit数并不是固定不变的。尽管8-bit的字节是经常用到的,但是一些应用也用到7-bit、9-bit、或者更多bit的字节数据。串口功能可以使用每个字节长达1~23bit长度的字节数据。另外,串口协议还需要1个开始位(1 start bit)(发送一个从“高到低”动作,低电平需要保持1 bit的时间)和1个停止位(1 stop bit)(发送一个从“底到高”动作,高电平需要保持1 bit的时间)来封装数据。
串口功能是双缓冲的。不论是发送器还是接收器,它们都包含有一个移位寄存器和一个数据寄存器。Host CPU可以在数据正在发送时,将新数据写入到发送器的数据寄存器;也可以在数据被接收时,从接收器的数据寄存器读取数据。
串口发送器通过对通道的“中断标志位”和数据发送器“需求标志位”置位来指示数据已经从“发送数据寄存器”传送到“发送移位寄存器”了。发送器的CIS标志位和DTRS被置位时,标志着发送数据寄存器已经准备就绪可以接收新数据了。假如中断标志位将被用于轮询环境(polling environment),CIS标志位就必须在新数据被写入发送器前被清零。同样的,如果一个DMA通道被用于UART通道服务,那么DTRS标志位就应被DMA通道描述符清零(should be cleared by theDMA channel descriptor)。当数据别写入到数据发送寄存器时,这24-bit的数据发送寄存器MSB必须写为0。这个是iTPU串口的一个握手信号,这个握手信号表明了新的发送数据进行串行移位输出已经写好。
同样的,串口接收器通过对CIS和DTRS标志位进行置位,来表明新数据已经到了。当数据从接收移位寄存器传送到接收数据寄存器后,CIS和DTRS标志位就被置位了。假如中断标志位将被用于轮询环境(polling environment),接收器的CIS标志位就必须在新数据被读取后被清零。如果一个DMA通道被用于UART通道服务,那么DTRS标志位就应被DMA通道描述符清零(should be cleared by theDMA channel descriptor)。为了避免数据丢失或者重复读取同样的数据,所以必须在接收后续的数据前完成 检测新接收到的数据、读取数据、和清除接收CIS标志位和DRTS标志位。同样的,在随后数据接收前,与每个已接收到的数据位相关的“错误条件”(error condition)必须被检测或者保存好,否则errorcondition将会丢失。
串口功能可以进行连续的传输(back-to-back transfer)。如果数据及时,发送器不会产生空闲信号(idle line signal),而是在一个stop位后,紧跟着下一帧数据的star位。空闲信号只有在传送数据已经被串行移位输出,发送数据寄存器为空时才会产生。发送器的空闲信号时间都是1 bit时间的整数倍。接收器可以处理任何长度的空闲信号。
每个数据都是由1个start位开始的,开始位始终是逻辑0。跟随在开始位后面的是特定长度的数据,数据是LSB模式发送的;如果校验位被使能,那么1个校验位也将产生,并被发送。数据的最后一位由1个stop位标志,结束位始终是逻辑1。一个空闲line就是由连续多个的stop位组成的,这也就意味着空闲信号其实就是信号线一直保持在逻辑1。
例子:一个ASCII字符“A”(8-bit,hex码为0x41)一直都是以如下的方式进行传送的。注意:数据是LSB first发送方式。
如图2更多详细内容:(注意:时序图显示0x41数据串行输出时序,LSB first。)
文中用到的“bittime”位时间,指的是传送或接受1bit数据所需要的时间。位时间是由波特率决定的,如下公式:
Bittime = 1/Baud Rate
接收器通过感知start位的下降沿,来检测数据。因为UART功能总是把服务请求初始化后的第一个下降沿作为有效的起始条件,此时若line是空闲的,就必须使能接收器。接收位只采样一次,大约半个bit time。在每次start bit时,接收器都将出现同步。
2 基本时序
如图2展示了TX和RX数据,以及串行数据的时序。任何写入到tx数据寄存器的数据,必须将msb位置为0(其实就是开始位,startbit)。这表明UART的新数据已经准备好,可以进行移位输出了。所有接收的数据通过API接收函数fs_etpu_uart_read _receive _data()进行右对齐。传送的数据总是由1开始位(1 bittime low)和1停止位(1 bit time high)封装。数据总是LSB FIRST移位输出。当所有数据被传送出去后,根据校验位是否被使能,校验位也将被选择性的输出。数据宽度被限制在23bits以内。这就意味着最大的数据大小、加上校验位,以及开始位、结束位,一帧数据最长将达到26bits。接收到的数据MSB总是0。
串口协议基础
1 串口概述
串口由收发器组成。发送器是通过TxD引脚发送串行数据,接收器是通过RxD引脚接收串行数据。发送器和接收器都利用了一个移位寄存器,这个移位寄存器可以将数据进行“并转串”和“串转并”。虽然一个UART接口通常都包含了发送器和接收器,而实际上一个全双工串口UART控制器需要独立的发送和接收通道。这是因为每个控制通道只控制了一个pin(一个通道要么配置成发送器,要么配置成接收器,不能同时配置成接收器和发送器)。没有严格规定哪个通道可以是发送器、哪个通道可以使接收器。
UART协议(串口协议)允许选择一个校验位来检测简单的通信错误(transmission errors)。校验位可以通过两种不同的方式进行产生和检测(generated and checked):奇校验和偶校验(odd and even parity)。UART协议功能支持所有的校验方式。
串口协议对每个字节数据的bit数并不是固定不变的。尽管8-bit的字节是经常用到的,但是一些应用也用到7-bit、9-bit、或者更多bit的字节数据。串口功能可以使用每个字节长达1~23bit长度的字节数据。另外,串口协议还需要1个开始位(1 start bit)(发送一个从“高到低”动作,低电平需要保持1 bit的时间)和1个停止位(1 stop bit)(发送一个从“底到高”动作,高电平需要保持1 bit的时间)来封装数据。
串口功能是双缓冲的。不论是发送器还是接收器,它们都包含有一个移位寄存器和一个数据寄存器。Host CPU可以在数据正在发送时,将新数据写入到发送器的数据寄存器;也可以在数据被接收时,从接收器的数据寄存器读取数据。
串口发送器通过对通道的“中断标志位”和数据发送器“需求标志位”置位来指示数据已经从“发送数据寄存器”传送到“发送移位寄存器”了。发送器的CIS标志位和DTRS被置位时,标志着发送数据寄存器已经准备就绪可以接收新数据了。假如中断标志位将被用于轮询环境(polling environment),CIS标志位就必须在新数据被写入发送器前被清零。同样的,如果一个DMA通道被用于UART通道服务,那么DTRS标志位就应被DMA通道描述符清零(should be cleared by theDMA channel descriptor)。当数据别写入到数据发送寄存器时,这24-bit的数据发送寄存器MSB必须写为0。这个是iTPU串口的一个握手信号,这个握手信号表明了新的发送数据进行串行移位输出已经写好。
同样的,串口接收器通过对CIS和DTRS标志位进行置位,来表明新数据已经到了。当数据从接收移位寄存器传送到接收数据寄存器后,CIS和DTRS标志位就被置位了。假如中断标志位将被用于轮询环境(polling environment),接收器的CIS标志位就必须在新数据被读取后被清零。如果一个DMA通道被用于UART通道服务,那么DTRS标志位就应被DMA通道描述符清零(should be cleared by theDMA channel descriptor)。为了避免数据丢失或者重复读取同样的数据,所以必须在接收后续的数据前完成 检测新接收到的数据、读取数据、和清除接收CIS标志位和DRTS标志位。同样的,在随后数据接收前,与每个已接收到的数据位相关的“错误条件”(error condition)必须被检测或者保存好,否则errorcondition将会丢失。
串口功能可以进行连续的传输(back-to-back transfer)。如果数据及时,发送器不会产生空闲信号(idle line signal),而是在一个stop位后,紧跟着下一帧数据的star位。空闲信号只有在传送数据已经被串行移位输出,发送数据寄存器为空时才会产生。发送器的空闲信号时间都是1 bit时间的整数倍。接收器可以处理任何长度的空闲信号。
每个数据都是由1个start位开始的,开始位始终是逻辑0。跟随在开始位后面的是特定长度的数据,数据是LSB模式发送的;如果校验位被使能,那么1个校验位也将产生,并被发送。数据的最后一位由1个stop位标志,结束位始终是逻辑1。一个空闲line就是由连续多个的stop位组成的,这也就意味着空闲信号其实就是信号线一直保持在逻辑1。
例子:一个ASCII字符“A”(8-bit,hex码为0x41)一直都是以如下的方式进行传送的。注意:数据是LSB first发送方式。
如图2更多详细内容:(注意:时序图显示0x41数据串行输出时序,LSB first。)
文中用到的“bittime”位时间,指的是传送或接受1bit数据所需要的时间。位时间是由波特率决定的,如下公式:
Bittime = 1/Baud Rate
接收器通过感知start位的下降沿,来检测数据。因为UART功能总是把服务请求初始化后的第一个下降沿作为有效的起始条件,此时若line是空闲的,就必须使能接收器。接收位只采样一次,大约半个bit time。在每次start bit时,接收器都将出现同步。
2 基本时序
如图2展示了TX和RX数据,以及串行数据的时序。任何写入到tx数据寄存器的数据,必须将msb位置为0(其实就是开始位,startbit)。这表明UART的新数据已经准备好,可以进行移位输出了。所有接收的数据通过API接收函数fs_etpu_uart_read _receive _data()进行右对齐。传送的数据总是由1开始位(1 bittime low)和1停止位(1 bit time high)封装。数据总是LSB FIRST移位输出。当所有数据被传送出去后,根据校验位是否被使能,校验位也将被选择性的输出。数据宽度被限制在23bits以内。这就意味着最大的数据大小、加上校验位,以及开始位、结束位,一帧数据最长将达到26bits。接收到的数据MSB总是0。
。这样,就将定时器和波特率联系起来了。
说说UART(转)的更多相关文章
- [Intel Edison开发板] 05、Edison开发基于MRAA实现IO控制,特别是UART通信
一.前言 下面是本系列文章的前几篇: [Intel Edison开发板] 01.Edison开发板性能简述 [Intel Edison开发板] 02.Edison开发板入门 [Intel Edison ...
- z-stack协议uart分析(DMA)
1.从ZMain里面的main函数开始分析 2.进入int main( void ); HalDriverInit(); //硬件相关初始化,有DMA初始化和UART初始化 3.进入HalDriv ...
- Win10 IoT C#开发 4 - UART 串口通信
Windows 10 IoT Core 是微软针对物联网市场的一个重要产品,既可以开发设备UI与用户交互式操作,又可以控制GPIO等接口,使得原来嵌入式繁琐的开发变得简单.通过Remote Debug ...
- (三) UART 串口通讯
UART : university asynchronous receiver and transmitter UART // 通用异步接收器和发送器 为什么要有串口:因为许多嵌入式设备没有显示屏 ...
- I2S/PCM/IOM-2、I2C/SPI/UART/GPIO/slimbus
概述 I2S,PCM,IOM-2都是数字音频接口,传数据的. I2C,SPI,UART,GPIO是控制接口,传控制信令的. I2S I2S(Inter-IC Sound Bus)是飞利浦公司为数字音频 ...
- 什么是UART中的FIFO
FIFO是先进先出缓冲区的意思,即串口接收到的数据可以先进入FIFO,不必马上进入中断服务程序接收,这样可以节省CPU时间.对于发送数据也一样可以把要发送的数据一起写入FIFO,串口控制器按照写入的顺 ...
- Uart、SPI和I2C的区别
串口通信:UART.SPI.I2C区别[引用] 1.UART就是两线,一根发送一根接收,可以全双工通信,线数也比较少.数据是异步传输的,对双方的时序要求比较严格,通信速度也不是很快.在多机通信上面 ...
- Raspberry Pi UART with PySerial
参考:http://programmingadvent.blogspot.hk/2012/12/raspberry-pi-uart-with-pyserial.html Raspberry Pi UA ...
- Raspberry Pi Resources-Using the UART
参考:RPi Serial Connection 本文来自:http://www.raspberry-projects.com/pi/programming-in-c/uart-serial-port ...
- Linux学习 : 裸板调试 之 配置UART
1.UART原理说明 发送数据时,CPU将并行数据写入UART,UART按照一定的格式在一根电线上串行发出:接收数据时,UART检测另一根电线上的信号,串行收集然后放在缓冲区中,CPU即可读取UART ...
随机推荐
- 字符串分隔 ->连续输入字符串,请按长度为8拆分每个字符串后输出到新的字符串数组; •长度不是8整数倍的字符串请在后面补数字0,空字符串不处理。
•连续输入字符串,请按长度为8拆分每个字符串后输出到新的字符串数组:•长度不是8整数倍的字符串请在后面补数字0,空字符串不处理. 输入描述: 连续输入字符串(输入2次,每个字符串长度小于100 ...
- (笔记)如何安装Arm-linux-gcc
如何安装Arm-linux-gcc 安装交叉编译工具链: 1.首先以root用户登入 2.复制arm-linux-gcc-4.3.2.tgz到根目录下tmp文件夹里 3.解压命令tar xvz ...
- 【转载】K-NN算法 学习总结
声明:作者:会心一击 出处:http://www.cnblogs.com/lijingchn/ 本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接, ...
- 第三百六十九节,Python分布式爬虫打造搜索引擎Scrapy精讲—elasticsearch(搜索引擎)用Django实现搜索功能
第三百六十九节,Python分布式爬虫打造搜索引擎Scrapy精讲—elasticsearch(搜索引擎)用Django实现搜索功能 Django实现搜索功能 1.在Django配置搜索结果页的路由映 ...
- C#跳转网页7种方法
1.Response.Redirect(http://www.baidu.com,false); 目标页面和原页面可以在2个服务器上,可输入网址或相对路径.后面的bool值为是否停止执行当前页. 跳转 ...
- 由“如何取得CPU的温度与型号”学到的知识延伸WQL
[Base]:WMI是一项核心的 Windows 管理技术:用户可以使用 WMI 管理本地和远程计算机.WQL就是 WMI 中的查询语言,翻译成中文好像可以成为 Windows 管理规范查询语言. 1 ...
- java注解自定义使用
Java提供了4种注解,专门负责新注解的创建: @Target: 表示该注解可以用于什么地方,可能的ElementType参数有:CONSTRUCTOR:构造器的声明FIELD:域声明(包括enum实 ...
- Linux系统下wetty安装和使用说明
1. Wetty简介 Wetty是使用Node.js和websockets开发的一个开源Web-based SSH.关于Web-based SSH的更多资料请参考https://en.wikipedi ...
- [转]java线程安全、jstack\线程dump、内存查看分析总结
http://jameswxx.iteye.com/blog/808546 java线程安全总结二 http://jameswxx.iteye.com/blog/1041173 jstack和线程du ...
- Java进阶面试题列表
面向对象编程的基本理念与核心设计思想 解释下多态性(polymorphism),封装性(encapsulation),内聚(cohesion)以及耦合(coupling). 继承(Inheritanc ...