ZOJ-3329 One Person Game (有环期望问题)
题目大意:有3个骰子,各有k1,k2,k3个面,面值为1~ki。还有一个计数器,初始值为0,统计所有的面值和。每次同时置这三个骰子,如果第一个骰子的朝上的值为a、第二个值为b、第三个值为c,那么将计数器置为零。直到计数器的值大于n时结束,求次数的期望值。
题目分析:这道题的状态转移方程不难写。定义状态dp(i)表示计数器值为 i 时还可以置几次,另外定义pk表示一次置出的3个骰子之和为k的概率,p0表示置出a、b、c的概率。则状态转移方程为:dp(i)= ∑pk*dp(i+k)+p0*dp(0)+1 <1>。到这儿就不知道怎么干了,查了下题解:定义dp(i)=A(i)*dp(0)+B(i),并将其代入<1>,得到A(i)= p0+∑pk*A(i+k),B(i)=1+ ∑pk*B(i+k)。那么只需要通过递推得到A(0)和B(0),就可以解得dp(0)=(1-A(0))/B(0)。
代码如下:
# include<iostream>
# include<cstdio>
# include<cstring>
# include<algorithm>
using namespace std; int n,a,b,c;
int k1,k2,k3;
double A[600],B[600];
double p[20]; void init()
{
memset(p,0,sizeof(p));
for(int i=1;i<=k1;++i)
for(int j=1;j<=k2;++j)
for(int k=1;k<=k3;++k)
if(i!=a||j!=b||k!=c)
p[i+j+k]+=1.0/k1/k2/k3;
} int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d%d%d%d%d",&n,&k1,&k2,&k3,&a,&b,&c);
init();
double p0=1.0/k1/k2/k3;
memset(A,0,sizeof(A));
memset(B,0,sizeof(B));
for(int i=n;i>=0;--i){
A[i]=p0;
B[i]=1;
for(int j=1;j<=k1+k2+k3;++j){
A[i]+=p[j]*A[i+j];
B[i]+=p[j]*B[i+j];
}
}
printf("%.16lf\n",B[0]/(1-A[0]));
}
return 0;
}
ZOJ-3329 One Person Game (有环期望问题)的更多相关文章
- ZOJ 3329 One Person Game 带环的概率DP
每次都和e[0]有关系 通过方程消去环 dp[i] = sigma(dp[i+k]*p)+dp[0]*p+1 dp[i] = a[i]*dp[0]+b[i] dp[i] = sigma(p*(a[i+ ...
- ZOJ 3329 One Person Game 概率DP 期望 难度:2
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=3754 本题分数为0的概率不确定,所以不能从0这端出发. 设E[i]为到达成功所 ...
- poj 2096 Collecting Bugs && ZOJ 3329 One Person Game && hdu 4035 Maze——期望DP
poj 2096 题目:http://poj.org/problem?id=2096 f[ i ][ j ] 表示收集了 i 个 n 的那个. j 个 s 的那个的期望步数. #include< ...
- ZOJ 3329 One Person Game:期望dp【关于一个点成环——分离系数】
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3329 题意: 给你面数分别为k1,k2,k3的三个骰子. 给定a ...
- ZOJ 3329 One Person Game (经典概率dp+有环方程求解)
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3329 题意:现在有三个骰子,分别有k1,k2和k3面,面上的点就是1~ki ...
- poj 2096 , zoj 3329 , hdu 4035 —— 期望DP
题目:http://poj.org/problem?id=2096 题目好长...意思就是每次出现 x 和 y,问期望几次 x 集齐 n 种,y 集齐 s 种: 所以设 f[i][j] 表示已经有几种 ...
- zoj 3329 One Person Game (有环 的 概率dp)
题目链接 这个题看的别人的思路,自己根本想不出来这种设方程的思路. 题意: 有三个骰子,分别有k1,k2,k3个面. 每次掷骰子,如果三个面分别为a,b,c则分数置0,否则加上三个骰子的分数之和. 当 ...
- ZOJ 3329 One Person Game 【概率DP,求期望】
题意:有三个骰子,分别有k1,k2,k3个面. 每次掷骰子,如果三个面分别为a,b,c则分数置0,否则加上三个骰子的分数之和. 当分数大于n时结束.求游戏的期望步数.初始分数为0 设dp[i]表示达到 ...
- One Person Game ZOJ - 3329(期望dp, 数学)
There is a very simple and interesting one-person game. You have 3 dice, namely Die1, Die2 and Die3. ...
- ZOJ 3329 期望DP
题目大意: 给定3个已经规定好k1,k2,k3面的3个色子,如果扔到a,b,c则重新开始从1 计数,否则不断叠加所有面的数字之和,直到超过n,输出丢的次数的数学期望 我们在此令dp[]数组记录从当前数 ...
随机推荐
- ACM题目————困难的串
题目描述 如果一个字符串包含两个相邻的重复子串,则称他是“容易的串”,其他串称为"困难的串".例如,BB,ABCDACABCAB,ABCDABCD都是容易的串,而D,DC,ABDA ...
- 分享三个USB抓包软件---Bus Hound,USBlyzer 和-USBTrace(转)
源:分享三个USB抓包软件---Bus Hound,USBlyzer 和-USBTrace Bus Hound官方下载地址:http://perisoft.net/bushound/Bus Hound ...
- Unix/Linux系统编程
一,开发工具 编译器 GCC 调试工具 GDB 代码编辑 Vim 1. 编译命令 gcc hello.c -o hello # 第二个hello为新生成的可执行文件名 -o 为生成的可执行文件指定名称 ...
- 基于qml创建最简单的图像处理程序(3)-使用opencv&qml进行图像处理
<基于qml创建最简单的图像处理程序>系列课程及配套代码基于qml创建最简单的图像处理程序(1)-基于qml创建界面http://www.cnblogs.com/jsxyhelu/p/83 ...
- Python3基础 try-指定except-as reason 捕获打开一个不存在的文件的时候,会产生OSError异常的示例
Python : 3.7.0 OS : Ubuntu 18.04.1 LTS IDE : PyCharm 2018.2.4 Conda ...
- windows下如何解决chrome浏览器左下角总提示'Downloading proxy script'的问题
答:关掉LAN settings中的Automatically detect settings选项和Use automatic configuration script选项,如下图
- 【源码编译】spark源码编译
本文采用cdh版本spark-1.6.0-cdh5.12.0 1.源码包下载 2.进入根目录编译,编译的方式有2种 maven mvn clean package \ -DskipTests -Pha ...
- HDU 6156 Palindrome Function
http://acm.hdu.edu.cn/showproblem.php?pid=6156 题意:$f(n,k)$表示判断n在k进制下是否是回文串,如果是,则返回k,如果不是,则返回1.现在要计算$ ...
- BZOJ 3992 【SDOI2015】 序列统计
题目链接:序列统计 我来复习板子了……这道题也是我写的第一发求原根啊? 求原根方法: 从小到大依次枚举原根.设当前枚举的原根为\(x\),模数为\(p\),\(p-1\)的质因数分别为\(p_1,p_ ...
- hihocoder 九十八周 搜索一 24点
题目1 : 搜索一·24点 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 周末,小Hi和小Ho都在家待着. 在收拾完房间时,小Ho偶然发现了一副扑克,于是两人考虑用这副 ...