一、病人分类的例子

让我从一个例子开始讲起,你会看到贝叶斯分类器很好懂,一点都不难。

某个医院早上收了六个门诊病人,如下表。

  症状  职业   疾病

  打喷嚏 护士   感冒 
  打喷嚏 农夫   过敏 
  头痛  建筑工人 脑震荡 
  头痛  建筑工人 感冒 
  打喷嚏 教师   感冒 
  头痛  教师   脑震荡

现在又来了第七个病人,是一个打喷嚏的建筑工人。请问他患上感冒的概率有多大?

根据贝叶斯定理

 P(A|B) = P(B|A) P(A) / P(B)

可得

   P(感冒|打喷嚏x建筑工人) 
    = P(打喷嚏x建筑工人|感冒) x P(感冒) 
    / P(打喷嚏x建筑工人)

假定"打喷嚏"和"建筑工人"这两个特征是独立的,因此,上面的等式就变成了

   P(感冒|打喷嚏x建筑工人) 
    = P(打喷嚏|感冒) x P(建筑工人|感冒) x P(感冒) 
    / P(打喷嚏) x P(建筑工人)

这是可以计算的。

  P(感冒|打喷嚏x建筑工人) 
    = 0.66 x 0.33 x 0.5 / 0.5 x 0.33 
    = 0.66

因此,这个打喷嚏的建筑工人,有66%的概率是得了感冒。同理,可以计算这个病人患上过敏或脑震荡的概率。比较这几个概率,就可以知道他最可能得什么病。

这就是贝叶斯分类器的基本方法:在统计资料的基础上,依据某些特征,计算各个类别的概率,从而实现分类。

二、朴素贝叶斯分类器的公式

假设某个体有n项特征(Feature),分别为F1、F2、...、Fn。现有m个类别(Category),分别为C1、C2、...、Cm。贝叶斯分类器就是计算出概率最大的那个分类,也就是求下面这个算式的最大值:

 P(C|F1F2...Fn) 
  = P(F1F2...Fn|C)P(C) / P(F1F2...Fn)

由于 P(F1F2...Fn) 对于所有的类别都是相同的,可以省略,问题就变成了求

 P(F1F2...Fn|C)P(C)

的最大值。

朴素贝叶斯分类器则是更进一步,假设所有特征都彼此独立,因此

 P(F1F2...Fn|C)P(C) 
  = P(F1|C)P(F2|C) ... P(Fn|C)P(C)

上式等号右边的每一项,都可以从统计资料中得到,由此就可以计算出每个类别对应的概率,从而找出最大概率的那个类。

虽然"所有特征彼此独立"这个假设,在现实中不太可能成立,但是它可以大大简化计算,而且有研究表明对分类结果的准确性影响不大。

下面再通过两个例子,来看如何使用朴素贝叶斯分类器。

三、账号分类的例子

本例摘自张洋的《算法杂货铺----分类算法之朴素贝叶斯分类》

根据某社区网站的抽样统计,该站10000个账号中有89%为真实账号(设为C0),11%为虚假账号(设为C1)。

  C0 = 0.89

  C1 = 0.11

接下来,就要用统计资料判断一个账号的真实性。假定某一个账号有以下三个特征:

    F1: 日志数量/注册天数 
    F2: 好友数量/注册天数 
    F3: 是否使用真实头像(真实头像为1,非真实头像为0)

    F1 = 0.1 
    F2 = 0.2 
    F3 = 0

请问该账号是真实账号还是虚假账号?

方法是使用朴素贝叶斯分类器,计算下面这个计算式的值。

    P(F1|C)P(F2|C)P(F3|C)P(C)

虽然上面这些值可以从统计资料得到,但是这里有一个问题:F1和F2是连续变量,不适宜按照某个特定值计算概率。

一个技巧是将连续值变为离散值,计算区间的概率。比如将F1分解成[0, 0.05]、(0.05, 0.2)、[0.2, +∞]三个区间,然后计算每个区间的概率。在我们这个例子中,F1等于0.1,落在第二个区间,所以计算的时候,就使用第二个区间的发生概率。

根据统计资料,可得:

  P(F1|C0) = 0.5, P(F1|C1) = 0.1 
  P(F2|C0) = 0.7, P(F2|C1) = 0.2 
  P(F3|C0) = 0.2, P(F3|C1) = 0.9

因此,

  P(F1|C0) P(F2|C0) P(F3|C0) P(C0) 
    = 0.5 x 0.7 x 0.2 x 0.89 
    = 0.0623

  P(F1|C1) P(F2|C1) P(F3|C1) P(C1) 
    = 0.1 x 0.2 x 0.9 x 0.11 
    = 0.00198

可以看到,虽然这个用户没有使用真实头像,但是他是真实账号的概率,比虚假账号高出30多倍,因此判断这个账号为真。

四、性别分类的例子

本例摘自维基百科,关于处理连续变量的另一种方法。

下面是一组人类身体特征的统计资料。

  性别  身高(英尺) 体重(磅)  脚掌(英寸)

  男    6       180     12 
  男    5.92     190     11 
  男    5.58     170     12 
  男    5.92     165     10 
  女    5       100     6 
  女    5.5      150     8 
  女    5.42     130     7 
  女    5.75     150     9

已知某人身高6英尺、体重130磅,脚掌8英寸,请问该人是男是女?

根据朴素贝叶斯分类器,计算下面这个式子的值。

P(身高|性别) x P(体重|性别) x P(脚掌|性别) x P(性别)

这里的困难在于,由于身高、体重、脚掌都是连续变量,不能采用离散变量的方法计算概率。而且由于样本太少,所以也无法分成区间计算。怎么办?

这时,可以假设男性和女性的身高、体重、脚掌都是正态分布,通过样本计算出均值和方差,也就是得到正态分布的密度函数。有了密度函数,就可以把值代入,算出某一点的密度函数的值。

比如,男性的身高是均值5.855、方差0.035的正态分布。所以,男性的身高为6英尺的概率的相对值等于1.5789(大于1并没有关系,因为这里是密度函数的值,只用来反映各个值的相对可能性)。

有了这些数据以后,就可以计算性别的分类了。

  P(身高=6|男) x P(体重=130|男) x P(脚掌=8|男) x P(男) 
    = 6.1984 x e-9

  P(身高=6|女) x P(体重=130|女) x P(脚掌=8|女) x P(女) 
    = 5.3778 x e-4

可以看到,女性的概率比男性要高出将近10000倍,所以判断该人为女性。

(完)

朴素贝叶斯分类器的应用Naive Bayes classifier
收藏:http://www.ruanyifeng.com/blog/2013/12/naive_bayes_classifier.html

朴素贝叶斯分类器的应用 Naive Bayes classifier的更多相关文章

  1. 朴素贝叶斯分类器(Naive Bayesian Classifier)

    本博客是基于对周志华教授所著的<机器学习>的"第7章 贝叶斯分类器"部分内容的学习笔记. 朴素贝叶斯分类器,顾名思义,是一种分类算法,且借助了贝叶斯定理.另外,它是一种 ...

  2. 机器学习---朴素贝叶斯分类器(Machine Learning Naive Bayes Classifier)

    朴素贝叶斯分类器是一组简单快速的分类算法.网上已经有很多文章介绍,比如这篇写得比较好:https://blog.csdn.net/sinat_36246371/article/details/6014 ...

  3. PGM学习之三 朴素贝叶斯分类器(Naive Bayes Classifier)

    介绍朴素贝叶斯分类器的文章已经很多了.本文的目的是通过基本概念和微小实例的复述,巩固对于朴素贝叶斯分类器的理解. 一 朴素贝叶斯分类器基础回顾 朴素贝叶斯分类器基于贝叶斯定义,特别适用于输入数据维数较 ...

  4. 朴素贝叶斯分类器(Naive Bayes)

    1. 贝叶斯定理 如果有两个事件,事件A和事件B.已知事件A发生的概率为p(A),事件B发生的概率为P(B),事件A发生的前提下.事件B发生的概率为p(B|A),事件B发生的前提下.事件A发生的概率为 ...

  5. 数据挖掘十大经典算法(9) 朴素贝叶斯分类器 Naive Bayes

    贝叶斯分类器 贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类.眼下研究较多的贝叶斯分类器主要有四种, ...

  6. 十大经典数据挖掘算法(9) 朴素贝叶斯分类器 Naive Bayes

    贝叶斯分类器 贝叶斯分类分类原则是一个对象的通过先验概率.贝叶斯后验概率公式后计算,也就是说,该对象属于一类的概率.选择具有最大后验概率的类作为对象的类属.现在更多的研究贝叶斯分类器,有四个,每间:N ...

  7. [Machine Learning & Algorithm] 朴素贝叶斯算法(Naive Bayes)

    生活中很多场合需要用到分类,比如新闻分类.病人分类等等. 本文介绍朴素贝叶斯分类器(Naive Bayes classifier),它是一种简单有效的常用分类算法. 一.病人分类的例子 让我从一个例子 ...

  8. 朴素贝叶斯方法(Naive Bayes Method)

        朴素贝叶斯是一种很简单的分类方法,之所以称之为朴素,是因为它有着非常强的前提条件-其所有特征都是相互独立的,是一种典型的生成学习算法.所谓生成学习算法,是指由训练数据学习联合概率分布P(X,Y ...

  9. 用scikit-learn实现朴素贝叶斯分类器 转

    原文:http://segmentfault.com/a/1190000002472791 朴素贝叶斯(Naive Bayes Classifier)是一种「天真」的算法(假定所有特征发生概率是独立的 ...

随机推荐

  1. ASP.NET MVC4中的App_start中BundleConfig的介绍使用

    在BundleConfig.cs中,指定CSS和JS,主要用来压缩JS和CSS   在ASP.NET MVC4中(在WebForm中应该也有),有一个叫做Bundle的东西,它用来将js和css进行压 ...

  2. SqlLocalDB2014使用笔记

    标签: 软件开发,数据库肯定是必不可少的当然是数据库了,在.Net开发中兼容性最好的莫过于微软的亲儿子“SqlServer”了,但是在安装SqlServer的安装随便找个版本就是一个多G或者几百兆,安 ...

  3. svn开发常用整理

    1.删除tortoise svn中的账号信息 其实tortoise svn也是将账号信息存放在本地的配置文件中 在不同的操作系统下,操作基本类似,首先我们来看一下windows下如何操作的. 以win ...

  4. 像网页开发一样调试ios程序

    PonyDebugger https://github.com/square/PonyDebugger

  5. 第一篇:初识ASP.NET控件开发_第二节:HelloWorld

    1)步骤一:新建类库项目:Controls,创建新解决方案:CustomLibrary 2)步骤二:在类库项目中添加“ASP.NET服务器控件”新建项:RenderHelloWorld.cs (也可以 ...

  6. VS Code 中文注释显示乱码

    将设置中的"files.autoGuessEncoding"项的值改为true即可. 1.文件 2.首选项 3.设置 4.搜索 "files.autoGuessEncod ...

  7. 扯淡 id 先用着

    )) { ) { ) & ) { ); }}

  8. C#基础课程之三循环语句

    for循环: ; i < ; i++) { Console.WriteLine("执行"+i+"次"); } while循环: while (true) ...

  9. U811.1接口EAI系列之五--材料出库--VB语言

    主要业务有:09其他出库单 11:材料出库单 32:销售出库单 主要业务代码: '材料出库生成XML Public Function xml_storeout(ds_head As MSHFlexGr ...

  10. jQuery学习笔记(简介,选择器)

    jQuery优势 1. 强大的选择器.jQuery允许开发者使用从CSS1到CSS3几乎所有的选择器,以及jQuery独创的高级而复杂的选择器. 2. 出色的DOM操作封装 3. 可靠的事件处理机制 ...