OpenMP是一种应用于多处理器程序设计的并行编程处理方案,它提供了对于并行编程的高层抽象。仅仅须要在程序中加入简单的指令,就能够编写高效的并行程序,而不用关心详细的并行实现细节。减少了并行编程的难度和复杂度。也正由于OpenMP的简单易用性,它并不适合于须要复杂的线程间同步和相互排斥的场合。

OpenCV中使用Sift或者Surf特征进行图像拼接的算法。须要分别对两幅或多幅图像进行特征提取和特征描写叙述,之后再进行图像特征点的配对。图像变换等操作。不同图像的特征提取和描写叙述的工作是整个过程中最耗费时间的,也是独立 执行的,能够使用OpenMP进行加速。

下面是不使用OpenMP加速的Sift图像拼接原程序:

#include "highgui/highgui.hpp"
#include "opencv2/nonfree/nonfree.hpp"
#include "opencv2/legacy/legacy.hpp"
#include "omp.h" using namespace cv; //计算原始图像点位在经过矩阵变换后在目标图像上相应位置
Point2f getTransformPoint(const Point2f originalPoint, const Mat &transformMaxtri); int main(int argc, char *argv[])
{
float startTime = omp_get_wtime(); Mat image01 = imread("Test01.jpg");
Mat image02 = imread("Test02.jpg");
imshow("拼接图像1", image01);
imshow("拼接图像2", image02); //灰度图转换
Mat image1, image2;
cvtColor(image01, image1, CV_RGB2GRAY);
cvtColor(image02, image2, CV_RGB2GRAY); //提取特征点
SiftFeatureDetector siftDetector(800); // 海塞矩阵阈值
vector<KeyPoint> keyPoint1, keyPoint2;
siftDetector.detect(image1, keyPoint1);
siftDetector.detect(image2, keyPoint2); //特征点描写叙述,为下边的特征点匹配做准备
SiftDescriptorExtractor siftDescriptor;
Mat imageDesc1, imageDesc2;
siftDescriptor.compute(image1, keyPoint1, imageDesc1);
siftDescriptor.compute(image2, keyPoint2, imageDesc2); float endTime = omp_get_wtime();
std::cout << "不使用OpenMP加速消耗时间: " << endTime - startTime << std::endl;
//获得匹配特征点。并提取最优配对
FlannBasedMatcher matcher;
vector<DMatch> matchePoints;
matcher.match(imageDesc1, imageDesc2, matchePoints, Mat());
sort(matchePoints.begin(), matchePoints.end()); //特征点排序
//获取排在前N个的最优匹配特征点
vector<Point2f> imagePoints1, imagePoints2;
for (int i = 0; i < 10; i++)
{
imagePoints1.push_back(keyPoint1[matchePoints[i].queryIdx].pt);
imagePoints2.push_back(keyPoint2[matchePoints[i].trainIdx].pt);
} //获取图像1到图像2的投影映射矩阵,尺寸为3*3
Mat homo = findHomography(imagePoints1, imagePoints2, CV_RANSAC);
Mat adjustMat = (Mat_<double>(3, 3) << 1.0, 0, image01.cols, 0, 1.0, 0, 0, 0, 1.0);
Mat adjustHomo = adjustMat*homo; //获取最强配对点在原始图像和矩阵变换后图像上的相应位置,用于图像拼接点的定位
Point2f originalLinkPoint, targetLinkPoint, basedImagePoint;
originalLinkPoint = keyPoint1[matchePoints[0].queryIdx].pt;
targetLinkPoint = getTransformPoint(originalLinkPoint, adjustHomo);
basedImagePoint = keyPoint2[matchePoints[0].trainIdx].pt; //图像配准
Mat imageTransform1;
warpPerspective(image01, imageTransform1, adjustMat*homo, Size(image02.cols + image01.cols + 110, image02.rows)); //在最强匹配点左側的重叠区域进行累加。是衔接稳定过渡。消除突变
Mat image1Overlap, image2Overlap; //图1和图2的重叠部分
image1Overlap = imageTransform1(Rect(Point(targetLinkPoint.x - basedImagePoint.x, 0), Point(targetLinkPoint.x, image02.rows)));
image2Overlap = image02(Rect(0, 0, image1Overlap.cols, image1Overlap.rows));
Mat image1ROICopy = image1Overlap.clone(); //复制一份图1的重叠部分
for (int i = 0; i < image1Overlap.rows; i++)
{
for (int j = 0; j < image1Overlap.cols; j++)
{
double weight;
weight = (double)j / image1Overlap.cols; //随距离改变而改变的叠加系数
image1Overlap.at<Vec3b>(i, j)[0] = (1 - weight)*image1ROICopy.at<Vec3b>(i, j)[0] + weight*image2Overlap.at<Vec3b>(i, j)[0];
image1Overlap.at<Vec3b>(i, j)[1] = (1 - weight)*image1ROICopy.at<Vec3b>(i, j)[1] + weight*image2Overlap.at<Vec3b>(i, j)[1];
image1Overlap.at<Vec3b>(i, j)[2] = (1 - weight)*image1ROICopy.at<Vec3b>(i, j)[2] + weight*image2Overlap.at<Vec3b>(i, j)[2];
}
}
Mat ROIMat = image02(Rect(Point(image1Overlap.cols, 0), Point(image02.cols, image02.rows))); //图2中不重合的部分
ROIMat.copyTo(Mat(imageTransform1, Rect(targetLinkPoint.x, 0, ROIMat.cols, image02.rows))); //不重合的部分直接衔接上去
namedWindow("拼接结果", 0);
imshow("拼接结果", imageTransform1);
imwrite("D:\\拼接结果.jpg", imageTransform1);
waitKey();
return 0;
} //计算原始图像点位在经过矩阵变换后在目标图像上相应位置
Point2f getTransformPoint(const Point2f originalPoint, const Mat &transformMaxtri)
{
Mat originelP, targetP;
originelP = (Mat_<double>(3, 1) << originalPoint.x, originalPoint.y, 1.0);
targetP = transformMaxtri*originelP;
float x = targetP.at<double>(0, 0) / targetP.at<double>(2, 0);
float y = targetP.at<double>(1, 0) / targetP.at<double>(2, 0);
return Point2f(x, y);
}

图像一:

图像二:

拼接结果 :

在我的机器上不使用OpenMP平均耗时 4.7S。

使用OpenMP也非常easy。VS 内置了对OpenMP的支持。在项目上右键->属性->配置属性->C/C++->语言->OpenMP支持里选择是:

之后在程序中增加OpenMP的头文件“omp.h”就能够了:

#include "highgui/highgui.hpp"
#include "opencv2/nonfree/nonfree.hpp"
#include "opencv2/legacy/legacy.hpp"
#include "omp.h" using namespace cv; //计算原始图像点位在经过矩阵变换后在目标图像上相应位置
Point2f getTransformPoint(const Point2f originalPoint, const Mat &transformMaxtri); int main(int argc, char *argv[])
{
float startTime = omp_get_wtime(); Mat image01, image02;
Mat image1, image2;
vector<KeyPoint> keyPoint1, keyPoint2;
Mat imageDesc1, imageDesc2;
SiftFeatureDetector siftDetector(800); // 海塞矩阵阈值
SiftDescriptorExtractor siftDescriptor;
//使用OpenMP的sections制导指令开启多线程
#pragma omp parallel sections
{
#pragma omp section
{
image01 = imread("Test01.jpg");
imshow("拼接图像1", image01);
//灰度图转换
cvtColor(image01, image1, CV_RGB2GRAY);
//提取特征点
siftDetector.detect(image1, keyPoint1);
//特征点描写叙述。为下边的特征点匹配做准备
siftDescriptor.compute(image1, keyPoint1, imageDesc1);
}
#pragma omp section
{
image02 = imread("Test02.jpg");
imshow("拼接图像2", image02);
cvtColor(image02, image2, CV_RGB2GRAY);
siftDetector.detect(image2, keyPoint2);
siftDescriptor.compute(image2, keyPoint2, imageDesc2);
}
}
float endTime = omp_get_wtime();
std::cout << "使用OpenMP加速消耗时间: " << endTime - startTime << std::endl; //获得匹配特征点。并提取最优配对
FlannBasedMatcher matcher;
vector<DMatch> matchePoints;
matcher.match(imageDesc1, imageDesc2, matchePoints, Mat());
sort(matchePoints.begin(), matchePoints.end()); //特征点排序
//获取排在前N个的最优匹配特征点
vector<Point2f> imagePoints1, imagePoints2;
for (int i = 0; i < 10; i++)
{
imagePoints1.push_back(keyPoint1[matchePoints[i].queryIdx].pt);
imagePoints2.push_back(keyPoint2[matchePoints[i].trainIdx].pt);
} //获取图像1到图像2的投影映射矩阵。尺寸为3*3
Mat homo = findHomography(imagePoints1, imagePoints2, CV_RANSAC);
Mat adjustMat = (Mat_<double>(3, 3) << 1.0, 0, image01.cols, 0, 1.0, 0, 0, 0, 1.0);
Mat adjustHomo = adjustMat*homo; //获取最强配对点在原始图像和矩阵变换后图像上的相应位置。用于图像拼接点的定位
Point2f originalLinkPoint, targetLinkPoint, basedImagePoint;
originalLinkPoint = keyPoint1[matchePoints[0].queryIdx].pt;
targetLinkPoint = getTransformPoint(originalLinkPoint, adjustHomo);
basedImagePoint = keyPoint2[matchePoints[0].trainIdx].pt; //图像配准
Mat imageTransform1;
warpPerspective(image01, imageTransform1, adjustMat*homo, Size(image02.cols + image01.cols + 110, image02.rows)); //在最强匹配点左側的重叠区域进行累加,是衔接稳定过渡,消除突变
Mat image1Overlap, image2Overlap; //图1和图2的重叠部分
image1Overlap = imageTransform1(Rect(Point(targetLinkPoint.x - basedImagePoint.x, 0), Point(targetLinkPoint.x, image02.rows)));
image2Overlap = image02(Rect(0, 0, image1Overlap.cols, image1Overlap.rows));
Mat image1ROICopy = image1Overlap.clone(); //复制一份图1的重叠部分
for (int i = 0; i < image1Overlap.rows; i++)
{
for (int j = 0; j < image1Overlap.cols; j++)
{
double weight;
weight = (double)j / image1Overlap.cols; //随距离改变而改变的叠加系数
image1Overlap.at<Vec3b>(i, j)[0] = (1 - weight)*image1ROICopy.at<Vec3b>(i, j)[0] + weight*image2Overlap.at<Vec3b>(i, j)[0];
image1Overlap.at<Vec3b>(i, j)[1] = (1 - weight)*image1ROICopy.at<Vec3b>(i, j)[1] + weight*image2Overlap.at<Vec3b>(i, j)[1];
image1Overlap.at<Vec3b>(i, j)[2] = (1 - weight)*image1ROICopy.at<Vec3b>(i, j)[2] + weight*image2Overlap.at<Vec3b>(i, j)[2];
}
}
Mat ROIMat = image02(Rect(Point(image1Overlap.cols, 0), Point(image02.cols, image02.rows))); //图2中不重合的部分
ROIMat.copyTo(Mat(imageTransform1, Rect(targetLinkPoint.x, 0, ROIMat.cols, image02.rows))); //不重合的部分直接衔接上去
namedWindow("拼接结果", 0);
imshow("拼接结果", imageTransform1);
imwrite("D:\\拼接结果.jpg", imageTransform1);
waitKey();
return 0;
} //计算原始图像点位在经过矩阵变换后在目标图像上相应位置
Point2f getTransformPoint(const Point2f originalPoint, const Mat &transformMaxtri)
{
Mat originelP, targetP;
originelP = (Mat_<double>(3, 1) << originalPoint.x, originalPoint.y, 1.0);
targetP = transformMaxtri*originelP;
float x = targetP.at<double>(0, 0) / targetP.at<double>(2, 0);
float y = targetP.at<double>(1, 0) / targetP.at<double>(2, 0);
return Point2f(x, y);
}

OpenMP中for制导指令用于迭代计算的任务分配,sections制导指令用于非迭代计算的任务分配,每一个#pragma omp section 语句会引导一个线程。

在上边的程序中相当于是两个线程分别运行两幅图像的特征提取和描写叙述操作。使用OpenMP后平均耗时2.5S,速度几乎相同提升了一倍。

OpenMP并行编程应用—加速OpenCV图像拼接算法的更多相关文章

  1. OpenMP并行编程

    什么是OpenMP?“OpenMP (Open Multi-Processing) is an application programming interface (API) that support ...

  2. OpenMP 并行编程

    OpenMP 并行编程 最近开始学习并行编程,目的是为了提高图像处理的运行速度,用的是VS2012自带的OpenMP. 如何让自己的编译器支持OpenMP: 1) 点击 项目属性页 2)点击 配置 3 ...

  3. OpenMP共享内存并行编程详解

    实验平台:win7, VS2010 1. 介绍 平行计算机可以简单分为共享内存和分布式内存,共享内存就是多个核心共享一个内存,目前的PC就是这类(不管是只有一个多核CPU还是可以插多个CPU,它们都有 ...

  4. 【并行计算】基于OpenMP的并行编程

    我们目前的计算机都是基于冯偌伊曼结构的,在MIMD作为主要研究对象的系统中,分为两种类型:共享内存系统和分布式内存系统,之前我们介绍的基于MPI方式的并行计算编程是属于分布式内存系统的方式,现在我们研 ...

  5. C++ OpenMp的并行编程

    基于OpenMp的并行编程 功能:并行处理比较耗时的for循环 在OpenMP中,对for循环并行化的任务调度使用schedule子句来实现: 使用格式:schedule(type[,size]) t ...

  6. 并行编程OpenMP基础及简单示例

    OpenMP基本概念 OpenMP是一种用于共享内存并行系统的多线程程序设计方案,支持的编程语言包括C.C++和Fortran.OpenMP提供了对并行算法的高层抽象描述,特别适合在多核CPU机器上的 ...

  7. C#并行编程-PLINQ:声明式数据并行

    目录 C#并行编程-相关概念 C#并行编程-Parallel C#并行编程-Task C#并行编程-并发集合 C#并行编程-线程同步原语 C#并行编程-PLINQ:声明式数据并行 背景 通过LINQ可 ...

  8. 初试PL/SQL并行编程

    -----------------------------Cryking原创------------------------------ -----------------------转载请注明出处, ...

  9. 6.跑步者--并行编程框架 ForkJoin

    本文如果您已经了解一般并行编程知识.了解Java concurrent部分如ExecutorService等相关内容. 虽说是Java的ForkJoin并行框架.但不要太在意Java,当中的思想在其他 ...

随机推荐

  1. Notepad++中支持Markdown

    最近在学习Markdown语言的使用,很想在XP主机上使用Markdown的离线编辑器,但MarkdownPad.作业部分的离线客户端都不能再XP上运行,需要.Net 4.5 以上版本,可惜一台老主机 ...

  2. 【神经网络】Reducing the Dimensionality of Data with Neural Networks

    这篇paper来做什么的? 用神经网络来降维.之前降维用的方法是主成分分析法PCA,找到数据集中最大方差方向.(附:降维有助于分类.可视化.交流和高维信号的存储) 这篇paper提出了一种非线性的PC ...

  3. tf.constant

    tf.constant constant( value, dtype=None, shape=None, name='Const', verify_shape=False ) 功能说明: 根据 val ...

  4. iOS高德地图使用-搜索,路径规划

    项目中想加入地图功能,使用高德地图第三方,想要实现确定一个位置,搜索路线并且显示的方法.耗了一番功夫,总算实现了. 效果 WeChat_1462507820.jpeg 一.配置工作 1.申请key 访 ...

  5. SnowNLP:•中文分词•词性标准•提取文本摘要,•提取文本关键词,•转换成拼音•繁体转简体的 处理中文文本的Python3 类库

    SnowNLP是一个python写的类库,可以方便的处理中文文本内容,是受到了TextBlob的启发而写的,由于现在大部分的自然语言处理库基本都是针对英文的,于是写了一个方便处理中文的类库,并且和Te ...

  6. Android命令行截屏screencap

    Android下面使用命令行截图. 因为工作调试用的机器,没法连接USB,所以用不了一般的截图方法,后来查了一下,Android4.0以后都内置了截图命令. 可以使用下面命令截取屏幕. screenc ...

  7. docker探索-swarm搭建docker集群(七)

    前言 Swarm 在 Docker 1.12 版本之前属于一个独立的项目,在 Docker 1.12 版本发布之后,该项目合并到了 Docker 中,成为 Docker 的一个子命令,docker s ...

  8. RabbitMQ安装 ubuntu12.04LTS

    RabbitMQ安装需要安装较多的依赖包,之前如果安装过RabbitMQ-server必须要先彻底删除. 重装的ubuntu系统(ubuntu server)的开发环境几乎是裸的,再重新编译安装erl ...

  9. C#反序列化:xml转化为实体

    public static T DeserialXmlToModel<T>(string xmlDocument) { T cmdObj = default(T); XmlSerializ ...

  10. Go Revel - Websockets

    revel提供了对`Websockets`的支持. 处理`Websockets`链接: 1.添加一个`WS`类型方法的路由 2.添加一个action接受 `*websocket.Conn`参数 例如, ...