Gossip算法因为Cassandra而名声大噪,Gossip看似简单,但要真正弄清楚其本质远没看起来那么容易。为了寻求Gossip的本质,下面的内容主要参考Gossip的原始论文:<<Efficient Reconciliation and Flow Control for Anti-Entropy Protocols>>。

1. Gossip背景

Gossip算法如其名,灵感来自办公室八卦,只要一个人八卦一下,在有限的时间内所有的人都会知道该八卦的信息,这种方式也与病毒传播类似,因此Gossip有众多的别名“闲话算法”、“疫情传播算法”、“病毒感染算法”、“谣言传播算法”。

但Gossip并不是一个新东西,之前的泛洪查找、路由算法都归属于这个范畴,不同的是Gossip给这类算法提供了明确的语义、具体实施方法及收敛性证明。

2. Gossip特点

Gossip算法又被称为反熵(shang)(Anti-Entropy),熵是物理学上的一个概念,代表杂乱无章,而反熵就是在杂乱无章中寻求一致,这充分说明了Gossip的特点:在一个有界网络中,每个节点都随机地与其他节点通信,经过一番杂乱无章的通信,最终所有节点的状态都会达成一致。每个节点可能知道所有其他节点,也可能仅知道几个邻居节点,只要这些节可以通过网络连通,最终他们的状态都是一致的,当然这也是疫情传播的特点。

要注意到的一点是,即使有的节点因宕机而重启,有新节点加入,但经过一段时间后,这些节点的状态也会与其他节点达成一致,也就是说,Gossip天然具有分布式容错的优点。

3. Gossip本质

Gossip是一个带冗余的容错算法,更进一步,Gossip是一个最终一致性算法。虽然无法保证在某个时刻所有节点状态一致,但可以保证在”最终“所有节点一致,”最终“是一个现实中存在,但理论上无法证明的时间点。

因为Gossip不要求节点知道所有其他节点,因此又具有去中心化的特点,节点之间完全对等,不需要任何的中心节点。实际上Gossip可以用于众多能接受“最终一致性”的领域:失败检测、路由同步、Pub/Sub、动态负载均衡。

但Gossip的缺点也很明显,冗余通信会对网路带宽、CUP资源造成很大的负载,而这些负载又受限于通信频率,该频率又影响着算法收敛的速度,后面我们会讲在各种场合下的优化方法。

4. Gossip节点的通信方式及收敛性

根据原论文,两个节点(A、B)之间存在三种通信方式:

  • push: A节点将数据(key,value,version)及对应的版本号推送给B节点,B节点更新A中比自己新的数据
  • pull:A仅将数据key,version推送给B,B将本地比A新的数据(Key,value,version)推送给A,A更新本地
  • push/pull:与pull类似,只是多了一步,A再将本地比B新的数据推送给B,B更新本地

如果把两个节点数据同步一次定义为一个周期,则在一个周期内,push需通信1次,pull需2次,push/pull则需3次,从效果上来讲,push/pull最好,理论上一个周期内可以使两个节点完全一致。直观上也感觉,push/pull的收敛速度是最快的。

假设每个节点通信周期都能选择(感染)一个新节点,则Gossip算法退化为一个二分查找过程,每个周期构成一个平衡二叉树,收敛速度为O(n2 ),对应的时间开销则为O(logn )。这也是Gossip理论上最优的收敛速度。但在实际情况中最优收敛速度是很难达到的,假设某个节点在第i个周期被感染的概率为pi ,第i+1个周期被感染的概率为pi+1 ,则pull的方式:

而push为:

显然pull的收敛速度大于push,而每个节点在每个周期被感染的概率都是固定的p(0<p<1),因此Gossip算法是基于p的平方收敛,也成为概率收敛,这在众多的一致性算法中是非常独特的。

个Gossip的节点的工作方式又分两种:

  • Anti-Entropy(反熵):以固定的概率传播所有的数据
  • Rumor-Mongering(谣言传播):仅传播新到达的数据

Anti-Entropy模式有完全的容错性,但有较大的网络、CPU负载;Rumor-Mongering模式有较小的网络、CPU负载,但必须为数据定义”最新“的边界,并且难以保证完全容错,对失败重启且超过”最新“期限的节点,无法保证最终一致性,或需要引入额外的机制处理不一致性。我们后续着重讨论Anti-Entropy模式的优化。

5. Anti-Entropy的协调机制

协调机制是讨论在每次2个节点通信时,如何交换数据能达到最快的一致性,也即消除两个节点的不一致性。上面所讲的push、pull等是通信方式,协调是在通信方式下的数据交换机制。协调所面临的最大问题是,因为受限于网络负载,不可能每次都把一个节点上的数据发送给另外一个节点,也即每个Gossip的消息大小都有上限。在有限的空间上有效率地交换所有的消息是协调要解决的主要问题。

在讨论之前先声明几个概念:

  • 令N = {p,q,s,...}为需要gossip通信的server集合,有界大小
  • 令(p1,p2,...)是宿主在节点p上的数据,其中数据有(key,value,version)构成,q的规则与p类似。

为了保证一致性,规定数据的value及version只有宿主节点才能修改,其他节点只能间接通过Gossip协议来请求数据对应的宿主节点修改。

5.1 精确协调(Precise Reconciliation)

精确协调希望在每次通信周期内都非常准确地消除双方的不一致性,具体表现为相互发送对方需要更新的数据,因为每个节点都在并发与多个节点通信,理论上精确协调很难做到。精确协调需要给每个数据项独立地维护自己的version,在每次交互是把所有的(key,value,version)发送到目标进行比对,从而找出双方不同之处从而更新。但因为Gossip消息存在大小限制,因此每次选择发送哪些数据就成了问题。当然可以随机选择一部分数据,也可确定性的选择数据。对确定性的选择而言,可以有最老优先(根据版本)和最新优先两种,最老优先会优先更新版本最新的数据,而最新更新正好相反,这样会造成老数据始终得不到机会更新,也即饥饿。

当然,开发这也可根据业务场景构造自己的选择算法,但始终都无法避免消息量过多的问题。

5.2 整体协调(Scuttlebutt Reconciliation)

整体协调与精确协调不同之处是,整体协调不是为每个数据都维护单独的版本号,而是为每个节点上的宿主数据维护统一的version。比如节点P会为(p1,p2,...)维护一个一致的全局version,相当于把所有的宿主数据看作一个整体,当与其他节点进行比较时,只需必须这些宿主数据的最高version,如果最高version相同说明这部分数据全部一致,否则再进行精确协调。

整体协调对数据的选择也有两种方法:

  • 广度优先:根据整体version大小排序,也称为公平选择
  • 深度优先:根据包含数据多少的排序,也称为非公平选择。因为后者更有实用价值,所以原论文更鼓励后者

6. Cassandra中的实现

经过验证,Cassandra实现了基于整体协调的push/push模式,有几个组件:

三条消息分别对应push/pull的三个阶段:

  • GossipDigitsMessage
  • GossipDigitsAckMessage
  • GossipDigitsAck2Message

还有三种状态:

  • EndpointState:维护宿主数据的全局version,并封装了HeartBeat和ApplicationState
  • HeartBeat:心跳信息
  • ApplicationState:系统负载信息(磁盘使用率)

Cassandra主要是使用Gossip完成三方面的功能:

  • 失败检测
  • 动态负载均衡
  • 去中心化的弹性扩展

7. 总结

Gossip是一种去中心化、容错而又最终一致性的绝妙算法,其收敛性不但得到证明还具有指数级的收敛速度。使用Gossip的系统可以很容易的把Server扩展到更多的节点,满足弹性扩展轻而易举。

唯一的缺点是收敛是最终一致性,不使用那些强一致性的场景,比如2pc。

分布式一致性协议之:Gossip(八卦)算法的更多相关文章

  1. 分布式一致性协议之:Raft算法

    一致性算法Raft详解 背景 熟悉或了解分布性系统的开发者都知道一致性算法的重要性,Paxos一致性算法从90年提出到现在已经有二十几年了,而Paxos流程太过于繁杂实现起来也比较复杂,可能也是以为过 ...

  2. 分布式一致性协议之:Paxos算法(转)

    Paxos算法的难理解与算法的知名度一样令人敬仰,从我个人的经历而言,难理解的原因并不是该算法高深到大家智商不够,而在于Lamport在表达该算法时过于晦涩且缺乏一个完整的应用场景.如果大师能换种思路 ...

  3. 搞懂分布式技术2:分布式一致性协议与Paxos,Raft算法

    搞懂分布式技术2:分布式一致性协议与Paxos,Raft算法 2PC 由于BASE理论需要在一致性和可用性方面做出权衡,因此涌现了很多关于一致性的算法和协议.其中比较著名的有二阶提交协议(2 Phas ...

  4. 分布式一致性协议Raft原理与实例

    分布式一致性协议Raft原理与实例 1.Raft协议 1.1 Raft简介 Raft是由Stanford提出的一种更易理解的一致性算法,意在取代目前广为使用的Paxos算法.目前,在各种主流语言中都有 ...

  5. [转帖]分布式一致性协议介绍(Paxos、Raft)

    分布式一致性协议介绍(Paxos.Raft) https://www.cnblogs.com/hugb/p/8955505.html  两阶段提交 Two-phase Commit(2PC):保证一个 ...

  6. [转帖]图解分布式一致性协议Paxos

    图解分布式一致性协议Paxos https://www.cnblogs.com/hugb/p/8955505.html   Paxos协议/算法是分布式系统中比较重要的协议,它有多重要呢? <分 ...

  7. Zookeeper——分布式一致性协议及Zookeeper Leader选举原理

    文章目录 一.引言 二.从ACID到CAP/BASE 三.分布式一致性协议 1. 2PC和3PC 2PC 发起事务请求 事务提交/回滚 3PC canCommit preCommit doCommit ...

  8. 使用GO实现Paxos分布式一致性协议

    什么是Paxos分布式一致性协议 最初的服务往往都是通过单体架构对外提供的,即单Server-单Database模式.随着业务的不断扩展,用户和请求数都在不断上升,如何应对大量的请求就成了每个服务都需 ...

  9. 浅谈 Raft 分布式一致性协议|图解 Raft

    前言 本篇文章将模拟一个KV数据读写服务,从提供单一节点读写服务,到结合分布式一致性协议(Raft)后,逐步扩展为一个分布式的,满足一致性读写需求的读写服务的过程. 其中将配合引入Raft协议的种种概 ...

  10. 分布式一致性协议之:Zab(Zookeeper的分布式一致性算法)

    Zookeeper使用了一种称为Zab(Zookeeper Atomic Broadcast)的协议作为其一致性复制的核心,据其作者说这是一种新发算法,其特点是充分考虑了Yahoo的具体情况:高吞吐量 ...

随机推荐

  1. GMTcolor

    http://gmt-tutorials.org/coloring_topography.html gmt grdcut topo15.grd -R -Gcut gmt grdgradient cut ...

  2. js写的一个HashMap

    1.脚本 /** * 模拟HashMap */ function HashMap(){ //定义长度 var length = 0; //创建一个对象 var obj = new Object(); ...

  3. (转)git合并多个commit

    原文地址:http://platinhom.github.io/2016/01/02/git-combine_commit/ 有时commit多了看着会不爽.所以想合并掉一些commit. 这里是最简 ...

  4. Java Junit 基础笔记

    Junit 1. 概念 JUnit是一个Java语言的单元测试框架. 单元测试:单元测试(英语:Unit Testing)又称为模块测试, 是针对程序模块(软件设计的最小单位)来进行正确性检验的测试工 ...

  5. 玩转TypeScript(3)--类型转换

    使用强类型变量常常需要从一种类型向另一种类型转换,通常使用ToString或ParseInt可以来实现一些简单的转换,但是有时候需要像.NET语言中那样将一种类型显示的转换为另一种类型,在TypeSc ...

  6. final版——爱阅APP功能说明书

    爱阅APP功能说明书 一.引言 以下内容是final版的功能说明书. 新增功能: 1.WiFi传书 2.书友群跳转 3.网址内部打开 4.设置-->关于爱阅 5.设置-->TXT文本的翻页 ...

  7. 关于XCode 的agvtool命令行

    简介:用agvtool如何来自动更新版本号和bulid version   agvtool是一个命令行工具,允许你自动递增到下一个最高的数量或具体的数字这些数字.本文档提供了更新您的构建和版本号码使用 ...

  8. Jsonp的实现

    JSONP(JSON with Padding)是JSON的一种“使用模式”,可用于解决主流浏览器的跨域数据访问的问题. 由于同源策略,一般来说位于 server1.com 的网页无法与不是 serv ...

  9. 20155204 2016-2017-2 《Java程序设计》第7周学习总结

    20155204 2016-2017-2 <Java程序设计>第7周学习总结 教材学习内容总结 在只有Lambda表达式的情况下,参数的类型必须写出来,如果有目标类型的话,在编译程序可推断 ...

  10. LG3812 【模板】线性基

    题意 给定n个整数(数字可能重复),求在这些数中选取任意个,使得他们的异或和最大. \(1≤n≤50,0≤S_i≤2^{50}\) 分析 模板题. 推荐一篇好博客 现在我来证明一下线性基的性质. 性质 ...