ACM: How many integers can you find-数论专题-容斥原理的简单应用+GCD
Time Limit:5000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u
Input
Output
Sample Input
12 2
2 3
Sample Output
7
/*/
题意:
给出N和M 输入M个数,找出所有M个数的倍数并且,Mi的倍数小于N,输出所有数的总个数。 如果一个数同时是三个数的倍数
单独记一个数的倍数次数为C(3,1) =3
记两个数的倍数次数为 C(3,2)=3
记三个数的倍数次数为 C(3,3)=1
3-3+1=1,只记一次依次类推 一个数为5个数的倍数
C(5,1)=5
C(5,2)=10
C(5,3)=10
C(5,4)=5
C(5,5)=1
5-10+10-5+1=1 六个数
C(6,1)=6
C(6,2)=15
C(6,3)=20
C(6,4)=15
C(6,5)=6
C(6,6)=1
6-15+20-15+6-1=1
上图:
然后因为数字不超过10个,可以运用枚举子集的思想去做这个题目。
所以用到DFS。
最后有一个地方要注意就是在DFS里面判断积这里,要用GCD,一开始没想到过不了样例。 AC代码:
/*/
#include"map"
#include"cmath"
#include"string"
#include"cstdio"
#include"vector"
#include"cstring"
#include"iostream"
#include"algorithm"
using namespace std;
typedef long long LL; LL a[15];
int n,m,cnt;
LL ans,x; LL gcd(LL a,LL b){
return b?gcd(b,a%b):a;
} void DFS(int x,LL axb,int num) {
axb=a[x]/gcd(a[x],axb)*axb;
if(num&1) ans+=(n-1)/axb;
else ans-=(n-1)/axb;
// cout<<"now ans is:"<<ans<<endl; //检查
for(int i=x+1; i<cnt; i++)
DFS(i,axb,num+1);
} int main() {
while(~scanf("%d%d",&n,&m)) {
ans=0;
cnt=0;
for(int i=0; i<m; i++) {
scanf("%I64d",&x);
if(x!=0)a[cnt++]=x;
}
for(int i=0; i<cnt; i++){
DFS(i,a[i],1); //用DFS去枚举每种选择的情况。
}
printf("%d\n",ans);
}
return 0;
}
ACM: How many integers can you find-数论专题-容斥原理的简单应用+GCD的更多相关文章
- 【数论Day1】 最大公约数(gcd)题目
20170529-3数论_gcd 题解: http://www.cnblogs.com/ljc20020730/p/6919116.html 日期 序号 题目名称 输入文件名 输出文件名 时限 内存 ...
- ACM: POJ 1061 青蛙的约会 -数论专题-扩展欧几里德
POJ 1061 青蛙的约会 Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%lld & %llu Descr ...
- ACM学习历程—HDU 5446 Unknown Treasure(数论)(2015长春网赛1010题)
Problem Description On the way to the next secret treasure hiding place, the mathematician discovere ...
- ACM学习历程—HDU 5317 RGCDQ (数论)
Problem Description Mr. Hdu is interested in Greatest Common Divisor (GCD). He wants to find more an ...
- ACM数论之旅3---最大公约数gcd和最小公倍数lcm(苦海无边,回头是岸( ̄∀ ̄))
gcd(a, b),就是求a和b的最大公约数 lcm(a, b),就是求a和b的最小公倍数 然后有个公式 a*b = gcd * lcm ( gcd就是gcd(a, b), ( •̀∀•́ ) ...
- ACM学习历程—BZOJ2956 模积和(数论)
Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m. Output 一个整数表 ...
- 数论(容斥原理)hdu-4509-The Boss on Mars
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4059 题目大意: 给一个n,求1~n中与n互质的数的4次方的总和. 解题思路: 容斥原理.逆元.公式 ...
- 邝斌带你飞之数论专题--Maximum GCD UVA - 11827
Given the N integers, you have to find the maximum GCD (greatest common divisor) of every possible p ...
- NOIP2018提高组金牌训练营——数论专题
地址 https://www.51nod.com/live/liveDescription.html#!liveId=23 1187 寻找分数 给出 a,b,c,d, 找一个分数p/q,使得a/b & ...
随机推荐
- Pyqt 以OOP方式动画的效果改变自身窗体大小
代码: # -*- coding:utf8 -*- from PyQt4.QtGui import * from PyQt4.QtCore import * import sys class ani( ...
- EF环境搭建碰到的问题
研究EF Code Frist安装Entity Framework的时候,遇到了一些问题,下面就描述一下这些问题,顺便附上问题的解决办法. 1.Nuget安装EF的时候,一直报错,解决的办法是,卸载N ...
- poj 2524:Ubiquitous Religions(并查集,入门题)
Ubiquitous Religions Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 23997 Accepted: ...
- 第二十三篇:在SOUI中使用LUA脚本开发界面
像写网页一样做客户端界面可能是很多客户端开发的理想. 做好一个可以实现和用户交互的动态网页应该包含两个部分:使用html做网页的布局,使用脚本如vbscript,javascript做用户交互的逻辑. ...
- 人性的弱点&&影响力
How wo win friends and influence people 人性的弱点 by 卡耐基 人际关系基本技巧 不要批评.谴责.抱怨 真诚的欣赏他人 激发他人的渴望 获得别人好感的方式 微 ...
- Arduino101学习(一)——Windows下环境配置
一.Arduino IDE下载 要开发Arduino 101/Genuino 101,你需要先安装并配置好相应的开发环境.下载地址 http://www.arduino.cn/thread-5838- ...
- 智能车学习(二十)——浅谈C车硬连接与软连接
一.为何要追求软连接? 车子进行软连接之后,可以达到一种效果,就是在高速过程中,车子如果快要发生侧翻的时候,只会跳一个后轮,且只是轻微,而前轮如果进行的内倾,就可以让前轮最大面积接触,增大 ...
- Jmeter 分布式性能测试
作为一个纯 JAVA 的GUI应用,JMeter 对于CPU和内存的消耗还是很惊人的,所以当需要模拟数以千计的并发用户时,使用单台机器模拟所有的并发用户就有些力不从心,甚至还会引起JAVA内存溢出的错 ...
- 解决android expandablelistview 里面嵌入gridview行数据重复问题
最近做了一个“csdn专家博客App” 当然了是android版本,在专家浏览页面,我才用了expandablelistview 组件来显示专家分类,每个分类点击之后可以显示专家的头像和名字. 很简单 ...
- HDU 5652 India and China Origins(经典并查集)
特别经典的一个题,还有一种方法就是二分+bfs 题意:空间内n*m个点,每个点是0或者1,0代表此点可以走,1代表不能走.接着经过q年,每年一个坐标表示此点不能走.问哪年开始图上不能出现最上边不能到达 ...