ACM: How many integers can you find-数论专题-容斥原理的简单应用+GCD
Time Limit:5000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u
Input
Output
Sample Input
12 2
2 3
Sample Output
7
/*/
题意:
给出N和M 输入M个数,找出所有M个数的倍数并且,Mi的倍数小于N,输出所有数的总个数。 如果一个数同时是三个数的倍数
单独记一个数的倍数次数为C(3,1) =3
记两个数的倍数次数为 C(3,2)=3
记三个数的倍数次数为 C(3,3)=1
3-3+1=1,只记一次依次类推 一个数为5个数的倍数
C(5,1)=5
C(5,2)=10
C(5,3)=10
C(5,4)=5
C(5,5)=1
5-10+10-5+1=1 六个数
C(6,1)=6
C(6,2)=15
C(6,3)=20
C(6,4)=15
C(6,5)=6
C(6,6)=1
6-15+20-15+6-1=1
上图:
然后因为数字不超过10个,可以运用枚举子集的思想去做这个题目。
所以用到DFS。
最后有一个地方要注意就是在DFS里面判断积这里,要用GCD,一开始没想到过不了样例。 AC代码:
/*/
#include"map"
#include"cmath"
#include"string"
#include"cstdio"
#include"vector"
#include"cstring"
#include"iostream"
#include"algorithm"
using namespace std;
typedef long long LL; LL a[15];
int n,m,cnt;
LL ans,x; LL gcd(LL a,LL b){
return b?gcd(b,a%b):a;
} void DFS(int x,LL axb,int num) {
axb=a[x]/gcd(a[x],axb)*axb;
if(num&1) ans+=(n-1)/axb;
else ans-=(n-1)/axb;
// cout<<"now ans is:"<<ans<<endl; //检查
for(int i=x+1; i<cnt; i++)
DFS(i,axb,num+1);
} int main() {
while(~scanf("%d%d",&n,&m)) {
ans=0;
cnt=0;
for(int i=0; i<m; i++) {
scanf("%I64d",&x);
if(x!=0)a[cnt++]=x;
}
for(int i=0; i<cnt; i++){
DFS(i,a[i],1); //用DFS去枚举每种选择的情况。
}
printf("%d\n",ans);
}
return 0;
}
ACM: How many integers can you find-数论专题-容斥原理的简单应用+GCD的更多相关文章
- 【数论Day1】 最大公约数(gcd)题目
20170529-3数论_gcd 题解: http://www.cnblogs.com/ljc20020730/p/6919116.html 日期 序号 题目名称 输入文件名 输出文件名 时限 内存 ...
- ACM: POJ 1061 青蛙的约会 -数论专题-扩展欧几里德
POJ 1061 青蛙的约会 Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%lld & %llu Descr ...
- ACM学习历程—HDU 5446 Unknown Treasure(数论)(2015长春网赛1010题)
Problem Description On the way to the next secret treasure hiding place, the mathematician discovere ...
- ACM学习历程—HDU 5317 RGCDQ (数论)
Problem Description Mr. Hdu is interested in Greatest Common Divisor (GCD). He wants to find more an ...
- ACM数论之旅3---最大公约数gcd和最小公倍数lcm(苦海无边,回头是岸( ̄∀ ̄))
gcd(a, b),就是求a和b的最大公约数 lcm(a, b),就是求a和b的最小公倍数 然后有个公式 a*b = gcd * lcm ( gcd就是gcd(a, b), ( •̀∀•́ ) ...
- ACM学习历程—BZOJ2956 模积和(数论)
Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m. Output 一个整数表 ...
- 数论(容斥原理)hdu-4509-The Boss on Mars
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4059 题目大意: 给一个n,求1~n中与n互质的数的4次方的总和. 解题思路: 容斥原理.逆元.公式 ...
- 邝斌带你飞之数论专题--Maximum GCD UVA - 11827
Given the N integers, you have to find the maximum GCD (greatest common divisor) of every possible p ...
- NOIP2018提高组金牌训练营——数论专题
地址 https://www.51nod.com/live/liveDescription.html#!liveId=23 1187 寻找分数 给出 a,b,c,d, 找一个分数p/q,使得a/b & ...
随机推荐
- ASP.NET的Cookie和Session
HTTP属于应用层,HTTP协议一共有五大特点:1.支持客户/服务器模式;2.简单快速;3.灵活;4.无连接;5.无状态. 无状态HTTP协议是无状态的协议.一旦数据交换完毕,客户端与服务器端的连接就 ...
- php支付宝接口用法
现在流行的网站支持平台,支付宝当仁不让的老大了,现在我们就来告诉你如何使用支付宝api来做第三方支付,把支付宝放到自己网站来, alipay_config.php配置程序如下: <?php */ ...
- PHP求时间间隔 n天、周、月、年后的时间
<?php date_default_timezone_set('PRC'); // 设置时区 $date1 = strtotime('2015-01-01'); //把日期转换成时间戳 $da ...
- 无废话Android之内容观察者ContentObserver、获取和保存系统的联系人信息、网络图片查看器、网络html查看器、使用异步框架Android-Async-Http(4)
1.内容观察者ContentObserver 如果ContentProvider的访问者需要知道ContentProvider中的数据发生了变化,可以在ContentProvider 发生数据变化时调 ...
- 【JAVA线程间通信技术】
之前的例子都是多个线程执行同一种任务,下面开始讨论多个线程执行不同任务的情况. 举个例子:有个仓库专门存储货物,有的货车专门将货物送往仓库,有的货车则专门将货物拉出仓库,这两种货车的任务不同,而且为了 ...
- PHP类方法重写原则
可能我们日常工作中很少用到这块知识点,但我还是喜欢把遇到的却不清楚的知识点摸清 PHP的类方法重写规则 1.final修饰的类方法不可被子类重写 final修饰的类方法不可被子类重写 即便final ...
- WPF ItemsControl ListBox ListView比较
在进行列表信息展示时,WPF中提供多种列表可供选择.这篇博客将对WPF ItemsControl, ListBox, ListView进行比较. 相同点: 1. 这三个控件都是列表型控件,可以进行列表 ...
- [Linux] 解决终端显示乱码问题
[背景] 公司弄了两台新的虚拟机,用来将原先都部署在一台机器上的JIRA, Fisheye, Confluence迁移到这两台机器上,使用SecureCRT进行登录,使用相关命令时,一台出现乱码,另外 ...
- ASP.NET 5探险(6):升级ASP.NET 5到beta6
(此文章同时发表在本人微信公众号"dotNET每日精华文章",欢迎右边二维码来关注.) 题记:微软根据ASP.NET 5的路线图如期发布了beta6,现在我们就来说说beta5升级 ...
- 制作U盘启动系统盘
下载ULtraISO,安装之后,先打开一个iso系统文件,然后选中菜单“启动”下的“写入硬盘映像”