【bzoj1098】办公楼

题意

FGD开办了一家电话公司。他雇用了N个职员,给了每个职员一部手机。每个职员的手机里都存储有一些同事的电话号码。由于FGD的公司规模不断扩大,旧的办公楼已经显得十分狭窄,FGD决定将公司迁至一些新的办公楼。FGD希望职员被安置在尽量多的办公楼当中,这样对于每个职员来说都会有一个相对更好的工作环境。但是,为了联系方便起见,如果两个职员被安置在两个不同的办公楼之内,他们必须拥有彼此的电话号码。

\(2<=N<=100000,1<=M<=2000000\)

分析

要求块内任意,块外充满连边的最小划分数。

那就等价于补图上块内任意,块外无连边的最小划分数。

那么就等价于求补图的联通块个数。

对\(n=100000\)的稠密图来讲,

直接求联通块会炸。

所以要利用到\(M\leq 2000000\)的特性。

我最初的想法是:我们可以枚举任意一对的\((i,j)\),若它们在原图中不存在连边,那么用并查集把它们合并。

由于这是一幅稠密图,所以\((i,j)\)有很大的概率存在连边,所以我们对于每个点\(i\),不需要枚举所有的\(j\),只需要随机枚举\(T\)个,然后尝试连边即可。

然而WA了......

接下来说的是正解。

求连通块的方法常有搜索或者并查集。

并查集看似不行,我们考虑搜索的过程,并根据\(M\leq 2000000\)的特性优化。

BFS:对于一个点\(i\),找与它连通的所有点\(j\),再找与\(j\)连通的所有点\(k\)......

把所有找到的点删去,ans++。

普通的实现上,最大的瓶颈在于已经删除的点我们还反复枚举了......

那么我们就不反复枚举好了,直接使用双向链表来删点,复杂度就优化到了\(O(n)\),因为最多有\(2M\)次失败。

还看到一种更精彩的代替双向链表的做法。

就是直接使用并查集代替双向链表。

代码

#include <cstdio>
#include <cctype>
#include <algorithm>
#include <vector>
using namespace std;

#define rep(i,a,b) for (int i=(a);i<=(b);i++)

const int N=131072;

int n,m;
vector<int> g[N];

int vis[N],f[N];
int cnt[N],len;
int hsn[N],q[N],qh,qt;

int rd(void) {
    int x=0,f=1; char c=getchar();
    for (;!isdigit(c);c=getchar()) if (c=='-') f=-1;
    for (;isdigit(c);c=getchar()) x=x*10+c-'0';
    return x*f;
}

int Find(int x) {
    if (f[x]==x) return x;
    return f[x]=Find(f[x]);
}

void Erase(int st) {
    qh=qt=0; q[++qt]=st; vis[st]=1;
    cnt[len]++;
    f[st]=Find(st+1);
    while (qh!=qt) {
        int x=q[++qh];
        rep(i,1,g[x].size()) {
            int nx=g[x][i-1];
            hsn[nx]=1;
        }
        int nx=Find(1);
        while (nx!=n+1) {
            if (!hsn[nx]) {
                q[++qt]=nx; vis[nx]=1; cnt[len]++;
                f[nx]=Find(nx+1);
            }
            nx=Find(nx+1);
        }
        rep(i,1,g[x].size()) {
            int nx=g[x][i-1];
            hsn[nx]=0;
        }
    }
}

int main(void) {
    #ifndef ONLINE_JUDGE
    freopen("sd.in","r",stdin);
    freopen("sd.out","w",stdout);
    #endif

    n=rd(),m=rd();
    rep(i,1,m) {
        int x=rd(),y=rd();
        g[x].push_back(y),g[y].push_back(x);
    }

    rep(i,1,n+1) f[i]=i;
    rep(i,1,n) if (!vis[i]) {
        len++;
        Erase(i);
    }

    sort(cnt+1,cnt+len+1);
    printf("%d\n",len);
    rep(i,1,len)
        printf("%d ",cnt[i]);
    printf("\n");

    return 0;
}

小结

(1)并查集可以代替双向链表,且实现更容易。

(2)外界充满边=补图外界无边,注意充满边的转化方法,最大团也是充满边的一种体现形式。

(3)连通块个数的统计,通常使用并查集或者搜索实现。

【bzoj1098】办公楼的更多相关文章

  1. bzoj1098 办公楼

    Description FGD开办了一家电话公司.他雇用了N个职员,给了每个职员一部手机.每个职员的手机里都存储有一些同事的电话号码.由于FGD的公司规模不断扩大,旧的办公楼已经显得十分狭窄,FGD决 ...

  2. 5098: [BZOJ1098][POI2007]办公楼biu

    5098: [BZOJ1098][POI2007]办公楼biu 没有数据结构就很棒 一个看上去非常玄学的代码 const int N=1e5+10,M=2e6+10; int n,m; int fa[ ...

  3. BZOJ1098: [POI2007]办公楼biu

    从问题可以看出是求补图的连通块及点数 但补图太大.所以考虑缩小规模. 当一个点归属于一个连通块后,它以后就不需要了.所以可以用链表,删去这个点,也就减小了规模. 一个点开始bfs,每个点只会进队一次, ...

  4. 【链表】Bzoj1098[POI2007]办公楼biu

    Description FGD开办了一家电话公司.他雇用了N个职员,给了每个职员一部手机.每个职员的手机里都存储有一些同事的电话号码.由于FGD的公司规模不断扩大,旧的办公楼已经显得十分狭窄,FGD决 ...

  5. BZOJ1098 POI2007 办公楼biu 【链表+bfs】

    Description FGD开办了一家电话公司.他雇用了N个职员,给了每个职员一部手机.每个职员的手机里都存储有一些同事的电话号码.由于FGD的公司规模不断扩大,旧的办公楼已经显得十分狭窄,FGD决 ...

  6. 【BZOJ1098】[POI2007]办公楼biu

    题目一开始看以为和强联通分量有关,后来发现是无向边,其实就是求原图的补图的联通块个数和大小.学习了黄学长的代码,利用链表来优化,其实就是枚举每一个人,然后把和他不相连的人都删去放进同一个联通块里,利用 ...

  7. 【BZOJ1098】办公楼biu(补图,bfs,链表)

    题意:有n个点m条边,要求将点尽可能多的分成若干个部分,使得若两个点不在同一个部分则他们之间必定有边 n<=1e5,m<=2e6 思路:From https://blog.csdn.net ...

  8. 【BZOJ】1098: [POI2007]办公楼biu(补图+bfs+链表)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1098 显然答案是补图连通块..... 想到用并查集...可是连补图的边都已经...n^2了...怎么 ...

  9. 办公楼[POI2007]

    题目描述 FGD开办了一家电话公司.他雇用了N个职员,给了每个职员一部手机.每个职员的手机里都存储有一些同事的电话号码.由于FGD的公司规模不断扩大,旧的办公楼已经显得十分狭窄,FGD决定将公司迁至一 ...

随机推荐

  1. http://www.cnblogs.com/softidea/p/5631763.html

    http://www.cnblogs.com/softidea/p/5631763.html

  2. Python开发程序:FTP程序

    作业:开发一个支持多用户在线的FTP程序 要求: 用户加密认证 允许同时多用户登录 每个用户有自己的家目录 ,且只能访问自己的家目录 对用户进行磁盘配额,每个用户的可用空间不同 允许用户在ftp se ...

  3. IEnumerable 使用foreach 详解

    自己实现迭代器 yield的使用 怎样高性能的随机取IEnumerable中的值 我们先思考几个问题: 为什么在foreach中不能修改item的值? 要实现foreach需要满足什么条件? 为什么L ...

  4. Android-Activity使用(1)

    一.添加 activity类  Aty1 继承Activity package activitylc.eoe.cn.l002activieylc; import android.app.Activit ...

  5. lodash的源码(1)

    数组篇 1.compact,就是将数组中的false值去掉 function compact(array) { var index = -1, length = array ? array.lengt ...

  6. 《30天自制操作系统》15_day_学习笔记

    harib12a: 这一部分我们来尝试两个任务的切换.下面我们一步一步的看: 1.定义TSS任务状态段(task statuc segment):定义的一种段,需要在GDT中定义使用 //TSS任务状 ...

  7. IOS密码加密

    一般使用两种加密技术 1.MD5 2.以前是SHA1加密  现在流行是SHA-2加密

  8. 面试:浅谈tcp/udp

    tcp是一种面向连接的.可靠的.基于字节流的传输层通信协议.是专门为了在不可靠的互联网络上提供一个可靠的端到端字节流而设计的,面向字节流. udp(用户数据报协议)是iso参考模型中一种无连接的传输层 ...

  9. JSP-11-Servlet

    1 初识Servlet Ø  Servlet做了什么 本身不做业务 只接收请求并决定调用哪个JavaBean去处理请求 确定用哪个页面来显示处理返回的数据 Ø  Servlet 是什么 Servlet ...

  10. Scala-Trait:混入与多态

    Scala 的 Trait 结合了抽象类与接口的能力,通过混入来获得灵活的多态能力. 代码如下所示: FileAbility 提供了读取文件.处理文件的能力, 其中继承一个空实现的 Trait:Lin ...