题目来源: TopCoder
基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题
 收藏
 关注
一个整数序列S的LCM(最小公倍数)是指最小的正整数X使得它是序列S中所有元素的倍数,那么LCM(S)=X。

例如,LCM(2)=2,LCM(4,6)=12,LCM(1,2,3,4,5)=60。
现在给定一个整数N(1<=N<=1000000),需要找到一个整数M,满足M>N,同时LCM(1,2,3,4,...,N-1,N) 整除 LCM(N+1,N+2,....,M-1,M),即LCM(N+1,N+2,....,M-1,M)是LCM(1,2,3,4,...,N-1,N) 的倍数.求最小的M值。
Input
多组测试数据,第一行一个整数T,表示测试数据数量,1<=T<=5
每组测试数据有相同的结构构成:
每组数据一行一个整数N,1<=N<=1000000。
Output
每组数据一行输出,即M的最小值。
Input示例
3
1
2
3
Output示例
2
4

6
lcm是最小公倍数。2个数的最小公倍数代表着什么呢? 其实就是2个数他们的质因子一定有公有部分(有的只有1)。
那么公有部分只需要取一次,其它非公有的都相乘,这个数就是最小公倍数。所以这里就是要找到一个m,使m尽量小,
让m都包含1~n里所有质因子的最高次方,这时候只需要对于每一个质因子,找到x,使x*prime[i](当前质因子) <= n,
然后x乘上最小的一个值后,x > n,这是候这个x就是满足的其中一个值。这是只需要遍历一下所有情况就能得到最小的m。
 
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<string>
#include<time.h>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define INF 1<<30
#define ll unsigned long long
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define MOD 1000000007
using namespace std;
const int MAXN = ;
ll n;
int a[MAXN],cnt,numa[MAXN];
int isnotprime[MAXN],num;
ll prime[MAXN];
void Init()
{
num = ;
memset(isnotprime,,sizeof(isnotprime));
for(int i = ; i <= MAXN - ; i++){
if(!isnotprime[i]){
prime[num++] = i;
}
for(int j = ; j < num && 1LL * i * prime[j] < MAXN; j++){
isnotprime[i*prime[j]] = ;
if(i % prime[j] == )break;
}
}
}
void solve()
{
if(n == ){
cout<<<<endl;
return ;
}
ll ans = ;
for(int i = ; i < num; i++){
if(prime[i] > n)break;
ll ret = ;
while(ret * prime[i] <= n){
ret *= prime[i];
}
for(int j = ; ; j++){
if(ret * j > n){
ret *= j;
break;
}
}
ans = max(ans,ret);
}
cout<<ans<<endl;
}
int main()
{
int t;
scanf("%d",&t);
Init();
while(t--){
scanf("%d",&n);
solve();
}
return ;
}

51nod 1434 理解lcm的更多相关文章

  1. 1434 区间LCM

    1434 区间LCM 基准时间限制:1 秒 空间限制:131072 KB 一个整数序列S的LCM(最小公倍数)是指最小的正整数X使得它是序列S中所有元素的倍数,那么LCM(S)=X. 例如,LCM(2 ...

  2. 51nod 1434

    首先可以得出一个性质:LCM(1,2,3,4,...,N-1,N) 中质因子k的出现的次数为t,则有k^t<=n 根据这个性质我们先筛出素数,然后枚举每个质数,求出对应的k和t,然后找出倍数j( ...

  3. 51nod 1012 最小公倍数LCM

    输入2个正整数A,B,求A与B的最小公倍数. 收起   输入 2个数A,B,中间用空格隔开.(1<= A,B <= 10^9) 输出 输出A与B的最小公倍数. 输入样例 30 105 输出 ...

  4. 51nod1434 区间LCM

    将n!标准分解.m!/n!必定需要包含n!的分解式.对于每个质数枚举最小的答案,然后总的取最大. #include<cstdio> #include<cstring> #inc ...

  5. 洛谷 UVA11388 GCD LCM

    UVA11388 GCD LCM Description of the title PDF The GCD of two positive integers is the largest intege ...

  6. NOIP2018提高组金牌训练营——数论专题

    地址 https://www.51nod.com/live/liveDescription.html#!liveId=23 1187 寻找分数 给出 a,b,c,d, 找一个分数p/q,使得a/b & ...

  7. 潜类别模型(Latent Class Modeling)

    1.潜类别模型概述 潜在类别模型(Latent Class Model, LCM; Lazarsfeld & Henry, 1968)或潜在类别分析(Latent Class Analysis ...

  8. 51nod 1575 Gcd and Lcm

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1575 万年巨坑终于填掉了…… 首先是煞笔西瓜的做题历程O_O. ...

  9. 【51nod】2026 Gcd and Lcm

    题解 话说LOJ说我今天宜学数论= =看到小迪学了杜教筛去蹭了一波小迪做的题 标解的杜教筛的函数不懂啊,怎么推的毫无思路= = 所以写了个复杂度稍微高一点的?? 首先,我们发现f是个积性函数,那么我们 ...

随机推荐

  1. 怎样关闭WIN7系统的自动更新

    百度经验 > 游戏/数码 > 电脑 > 电脑软件 怎样关闭WIN7系统的自动更新 听语音 | 浏览:108460 | 更新:2012-07-24 18:03 | 标签:win7 1 ...

  2. 虚拟机 centos设置代理上网

    假设我们要设置代理为 IP:PORT 1.网页上网 网页上网设置代理很简单,在firefox浏览器下 Edit-->>Preferences-->>Advanced--> ...

  3. 借助91助手,将ibook中的pdf文件拷贝至其它的pdf阅读器中(ios设备无需越狱)

    有时候在使用ios自带的ibook阅读pdf文件的时候,会发现ibook有些功能并不是那么方便.最近我就遇到了一例,我想在ibook中放一本比较大的pdf书,页数有几百吧,pdf文件本身每一章节都是有 ...

  4. 将pdf文件通过itunes直接拖到ipad的ibooks里面

    开始不太清楚进行过什么设置,使得以前可以直接通过拖动的方式复制pdf文件到ipad里面的方法不管用了.在帖子http://bbs.weiphone.com/read-htm-tid-864091-pa ...

  5. javascript按回车键触发事件

    <form id="search-form" > <input type="text" onkeypress="getKey();r ...

  6. 微信v3 JSAPI最新接口错误 get_brand_wcpay_request:fail

    WxPay.JsApiPay.php文件下 原始接口代码 /** * * 获取jsapi支付的参数 * @param array $UnifiedOrderResult 统一支付接口返回的数据 * @ ...

  7. linux svn

    1.回滚 一直在找svn回滚的方法,这个还是很实用的,屡试不爽阿 经常由于坑爹的需求,功能要切回到之前的某一个版本.有两种方法可以实现: 方法1: 用svn merge  1) 先 svn up,保证 ...

  8. 多个mapper location时, mybatis spring的自动扫描配置

    1. MapperScannerConfigurer 里面的basePackage, 多个package用逗号分隔 2. SqlSessionFactoryBean里面的mapperLocations ...

  9. win7 IIS7.5配置伪静态

    转自:http://www.cnblogs.com/luckly-hf/archive/2013/03/07/2947687.html 第一部: 从如下地址中下载URLRewriter组件组件: 官方 ...

  10. 需要安全认证的远程EJB调用示例(Jboss EAP 6.2环境)

    一,Remote EJB 服务接口定义: package yjmyzz.ejb.server.helloworld; public interface HelloWorldService { publ ...